osrm-backend/include/engine/datafacade/internal_datafacade.hpp
2016-10-19 17:26:21 -07:00

958 lines
37 KiB
C++

#ifndef INTERNAL_DATAFACADE_HPP
#define INTERNAL_DATAFACADE_HPP
// implements all data storage when shared memory is _NOT_ used
#include "engine/datafacade/datafacade_base.hpp"
#include "extractor/guidance/turn_instruction.hpp"
#include "util/guidance/bearing_class.hpp"
#include "util/guidance/entry_class.hpp"
#include "extractor/compressed_edge_container.hpp"
#include "extractor/original_edge_data.hpp"
#include "extractor/profile_properties.hpp"
#include "extractor/query_node.hpp"
#include "storage/io.hpp"
#include "storage/storage_config.hpp"
#include "storage/io.hpp"
#include "engine/geospatial_query.hpp"
#include "util/graph_loader.hpp"
#include "util/guidance/turn_lanes.hpp"
#include "util/io.hpp"
#include "util/packed_vector.hpp"
#include "util/range_table.hpp"
#include "util/rectangle.hpp"
#include "util/shared_memory_vector_wrapper.hpp"
#include "util/simple_logger.hpp"
#include "util/static_graph.hpp"
#include "util/static_rtree.hpp"
#include "util/typedefs.hpp"
#include "osrm/coordinate.hpp"
#include <cstddef>
#include <cstdlib>
#include <algorithm>
#include <fstream>
#include <ios>
#include <limits>
#include <memory>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include <boost/assert.hpp>
#include <boost/filesystem/fstream.hpp>
#include <boost/filesystem/operations.hpp>
#include <boost/filesystem/path.hpp>
#include <boost/thread/tss.hpp>
namespace osrm
{
namespace engine
{
namespace datafacade
{
class InternalDataFacade final : public BaseDataFacade
{
private:
using super = BaseDataFacade;
using QueryGraph = util::StaticGraph<typename super::EdgeData>;
using InputEdge = QueryGraph::InputEdge;
using RTreeLeaf = super::RTreeLeaf;
using InternalRTree =
util::StaticRTree<RTreeLeaf, util::ShM<util::Coordinate, false>::vector, false>;
using InternalGeospatialQuery = GeospatialQuery<InternalRTree, BaseDataFacade>;
InternalDataFacade() {}
unsigned m_check_sum;
std::unique_ptr<QueryGraph> m_query_graph;
std::string m_timestamp;
util::ShM<util::Coordinate, false>::vector m_coordinate_list;
util::PackedVector<OSMNodeID, false> m_osmnodeid_list;
util::ShM<GeometryID, false>::vector m_via_geometry_list;
util::ShM<unsigned, false>::vector m_name_ID_list;
util::ShM<extractor::guidance::TurnInstruction, false>::vector m_turn_instruction_list;
util::ShM<LaneDataID, false>::vector m_lane_data_id;
util::ShM<util::guidance::LaneTupleIdPair, false>::vector m_lane_tuple_id_pairs;
util::ShM<extractor::TravelMode, false>::vector m_travel_mode_list;
util::ShM<char, false>::vector m_names_char_list;
util::ShM<unsigned, false>::vector m_geometry_indices;
util::ShM<extractor::CompressedEdgeContainer::CompressedEdge, false>::vector m_geometry_list;
util::ShM<bool, false>::vector m_is_core_node;
util::ShM<unsigned, false>::vector m_segment_weights;
util::ShM<uint8_t, false>::vector m_datasource_list;
util::ShM<std::string, false>::vector m_datasource_names;
util::ShM<std::uint32_t, false>::vector m_lane_description_offsets;
util::ShM<extractor::guidance::TurnLaneType::Mask, false>::vector m_lane_description_masks;
extractor::ProfileProperties m_profile_properties;
std::unique_ptr<InternalRTree> m_static_rtree;
std::unique_ptr<InternalGeospatialQuery> m_geospatial_query;
boost::filesystem::path ram_index_path;
boost::filesystem::path file_index_path;
util::RangeTable<16, false> m_name_table;
// bearing classes by node based node
util::ShM<BearingClassID, false>::vector m_bearing_class_id_table;
// entry class IDs by edge based egde
util::ShM<EntryClassID, false>::vector m_entry_class_id_list;
// the look-up table for entry classes. An entry class lists the possibility of entry for all
// available turns. For every turn, there is an associated entry class.
util::ShM<util::guidance::EntryClass, false>::vector m_entry_class_table;
// the look-up table for distinct bearing classes. A bearing class lists the available bearings
// at an intersection
util::RangeTable<16, false> m_bearing_ranges_table;
util::ShM<DiscreteBearing, false>::vector m_bearing_values_table;
void LoadProfileProperties(const boost::filesystem::path &properties_path)
{
boost::filesystem::ifstream in_stream(properties_path);
if (!in_stream)
{
throw util::exception("Could not open " + properties_path.string() + " for reading.");
}
in_stream.read(reinterpret_cast<char *>(&m_profile_properties),
sizeof(m_profile_properties));
}
void LoadLaneTupleIdPairs(const boost::filesystem::path &lane_data_path)
{
boost::filesystem::ifstream in_stream(lane_data_path);
if (!in_stream)
{
throw util::exception("Could not open " + lane_data_path.string() + " for reading.");
}
std::uint64_t size;
in_stream.read(reinterpret_cast<char *>(&size), sizeof(size));
m_lane_tuple_id_pairs.resize(size);
in_stream.read(reinterpret_cast<char *>(&m_lane_tuple_id_pairs[0]),
sizeof(m_lane_tuple_id_pairs) * size);
}
void LoadTimestamp(const boost::filesystem::path &timestamp_path)
{
util::SimpleLogger().Write() << "Loading Timestamp";
boost::filesystem::ifstream timestamp_stream(timestamp_path);
if (!timestamp_stream)
{
throw util::exception("Could not open " + timestamp_path.string() + " for reading.");
}
auto timestamp_size = storage::io::readTimestampSize(timestamp_stream);
char *timestamp_ptr = new char[timestamp_size]();
storage::io::readTimestamp(timestamp_stream, timestamp_ptr, timestamp_size);
m_timestamp = std::string(timestamp_ptr);
}
void LoadGraph(const boost::filesystem::path &hsgr_path)
{
boost::filesystem::ifstream hsgr_input_stream(hsgr_path);
if (!hsgr_input_stream)
{
throw util::exception("Could not open " + hsgr_path.string() + " for reading.");
}
auto header = storage::io::readHSGRHeader(hsgr_input_stream);
m_check_sum = header.checksum;
util::ShM<QueryGraph::NodeArrayEntry, false>::vector node_list(header.number_of_nodes);
util::ShM<QueryGraph::EdgeArrayEntry, false>::vector edge_list(header.number_of_edges);
storage::io::readHSGR(hsgr_input_stream,
node_list.data(),
header.number_of_nodes,
edge_list.data(),
header.number_of_edges);
m_query_graph = std::unique_ptr<QueryGraph>(new QueryGraph(node_list, edge_list));
util::SimpleLogger().Write() << "Data checksum is " << m_check_sum;
}
void LoadNodeAndEdgeInformation(const boost::filesystem::path &nodes_file,
const boost::filesystem::path &edges_file)
{
boost::filesystem::ifstream nodes_input_stream(nodes_file, std::ios::binary);
extractor::QueryNode current_node;
unsigned number_of_coordinates = 0;
nodes_input_stream.read((char *)&number_of_coordinates, sizeof(unsigned));
m_coordinate_list.resize(number_of_coordinates);
m_osmnodeid_list.reserve(number_of_coordinates);
for (unsigned i = 0; i < number_of_coordinates; ++i)
{
nodes_input_stream.read((char *)&current_node, sizeof(extractor::QueryNode));
m_coordinate_list[i] = util::Coordinate(current_node.lon, current_node.lat);
m_osmnodeid_list.push_back(current_node.node_id);
BOOST_ASSERT(m_coordinate_list[i].IsValid());
}
boost::filesystem::ifstream edges_input_stream(edges_file, std::ios::binary);
unsigned number_of_edges = 0;
edges_input_stream.read((char *)&number_of_edges, sizeof(unsigned));
m_via_geometry_list.resize(number_of_edges);
m_name_ID_list.resize(number_of_edges);
m_turn_instruction_list.resize(number_of_edges);
m_lane_data_id.resize(number_of_edges);
m_travel_mode_list.resize(number_of_edges);
m_entry_class_id_list.resize(number_of_edges);
extractor::OriginalEdgeData current_edge_data;
for (unsigned i = 0; i < number_of_edges; ++i)
{
edges_input_stream.read((char *)&(current_edge_data),
sizeof(extractor::OriginalEdgeData));
m_via_geometry_list[i] = current_edge_data.via_geometry;
m_name_ID_list[i] = current_edge_data.name_id;
m_turn_instruction_list[i] = current_edge_data.turn_instruction;
m_lane_data_id[i] = current_edge_data.lane_data_id;
m_travel_mode_list[i] = current_edge_data.travel_mode;
m_entry_class_id_list[i] = current_edge_data.entry_classid;
}
}
void LoadCoreInformation(const boost::filesystem::path &core_data_file)
{
std::ifstream core_stream(core_data_file.string().c_str(), std::ios::binary);
unsigned number_of_markers;
core_stream.read((char *)&number_of_markers, sizeof(unsigned));
std::vector<char> unpacked_core_markers(number_of_markers);
core_stream.read((char *)unpacked_core_markers.data(), sizeof(char) * number_of_markers);
// in this case we have nothing to do
if (number_of_markers <= 0)
{
return;
}
m_is_core_node.resize(number_of_markers);
for (auto i = 0u; i < number_of_markers; ++i)
{
BOOST_ASSERT(unpacked_core_markers[i] == 0 || unpacked_core_markers[i] == 1);
m_is_core_node[i] = unpacked_core_markers[i] == 1;
}
}
void LoadGeometries(const boost::filesystem::path &geometry_file)
{
std::ifstream geometry_stream(geometry_file.string().c_str(), std::ios::binary);
unsigned number_of_indices = 0;
unsigned number_of_compressed_geometries = 0;
geometry_stream.read((char *)&number_of_indices, sizeof(unsigned));
m_geometry_indices.resize(number_of_indices);
if (number_of_indices > 0)
{
geometry_stream.read((char *)&(m_geometry_indices[0]),
number_of_indices * sizeof(unsigned));
}
geometry_stream.read((char *)&number_of_compressed_geometries, sizeof(unsigned));
BOOST_ASSERT(m_geometry_indices.back() == number_of_compressed_geometries);
m_geometry_list.resize(number_of_compressed_geometries);
if (number_of_compressed_geometries > 0)
{
geometry_stream.read((char *)&(m_geometry_list[0]),
number_of_compressed_geometries *
sizeof(extractor::CompressedEdgeContainer::CompressedEdge));
}
}
void LoadDatasourceInfo(const boost::filesystem::path &datasource_names_file,
const boost::filesystem::path &datasource_indexes_file)
{
boost::filesystem::ifstream datasources_stream(datasource_indexes_file, std::ios::binary);
if (!datasources_stream)
{
throw util::exception("Could not open " + datasource_indexes_file.string() +
" for reading!");
}
BOOST_ASSERT(datasources_stream);
std::uint64_t number_of_datasources = 0;
datasources_stream.read(reinterpret_cast<char *>(&number_of_datasources),
sizeof(number_of_datasources));
if (number_of_datasources > 0)
{
m_datasource_list.resize(number_of_datasources);
datasources_stream.read(reinterpret_cast<char *>(&(m_datasource_list[0])),
number_of_datasources * sizeof(uint8_t));
}
boost::filesystem::ifstream datasourcenames_stream(datasource_names_file, std::ios::binary);
if (!datasourcenames_stream)
{
throw util::exception("Could not open " + datasource_names_file.string() +
" for reading!");
}
BOOST_ASSERT(datasourcenames_stream);
std::string name;
while (std::getline(datasourcenames_stream, name))
{
m_datasource_names.push_back(std::move(name));
}
}
void LoadRTree()
{
BOOST_ASSERT_MSG(!m_coordinate_list.empty(), "coordinates must be loaded before r-tree");
m_static_rtree.reset(new InternalRTree(ram_index_path, file_index_path, m_coordinate_list));
m_geospatial_query.reset(
new InternalGeospatialQuery(*m_static_rtree, m_coordinate_list, *this));
}
void LoadLaneDescriptions(const boost::filesystem::path &lane_description_file)
{
if (!util::deserializeAdjacencyArray(lane_description_file.string(),
m_lane_description_offsets,
m_lane_description_masks))
util::SimpleLogger().Write(logWARNING) << "Failed to read turn lane descriptions from "
<< lane_description_file.string();
}
void LoadStreetNames(const boost::filesystem::path &names_file)
{
boost::filesystem::ifstream name_stream(names_file, std::ios::binary);
name_stream >> m_name_table;
unsigned number_of_chars = 0;
name_stream.read((char *)&number_of_chars, sizeof(unsigned));
BOOST_ASSERT_MSG(0 != number_of_chars, "name file broken");
m_names_char_list.resize(number_of_chars + 1); //+1 gives sentinel element
name_stream.read((char *)&m_names_char_list[0], number_of_chars * sizeof(char));
if (0 == m_names_char_list.size())
{
util::SimpleLogger().Write(logWARNING) << "list of street names is empty";
}
}
void LoadIntersectionClasses(const boost::filesystem::path &intersection_class_file)
{
std::ifstream intersection_stream(intersection_class_file.string(), std::ios::binary);
if (!intersection_stream)
throw util::exception("Could not open " + intersection_class_file.string() +
" for reading.");
if (!util::readAndCheckFingerprint(intersection_stream))
throw util::exception("Fingeprint does not match in " +
intersection_class_file.string());
{
util::SimpleLogger().Write(logINFO) << "Loading Bearing Class IDs";
std::vector<BearingClassID> bearing_class_id;
if (!util::deserializeVector(intersection_stream, bearing_class_id))
throw util::exception("Reading from " + intersection_class_file.string() +
" failed.");
m_bearing_class_id_table.resize(bearing_class_id.size());
std::copy(
bearing_class_id.begin(), bearing_class_id.end(), &m_bearing_class_id_table[0]);
}
{
util::SimpleLogger().Write(logINFO) << "Loading Bearing Classes";
// read the range table
intersection_stream >> m_bearing_ranges_table;
std::vector<util::guidance::BearingClass> bearing_classes;
// and the actual bearing values
std::uint64_t num_bearings;
intersection_stream.read(reinterpret_cast<char *>(&num_bearings), sizeof(num_bearings));
m_bearing_values_table.resize(num_bearings);
intersection_stream.read(reinterpret_cast<char *>(&m_bearing_values_table[0]),
sizeof(m_bearing_values_table[0]) * num_bearings);
if (!static_cast<bool>(intersection_stream))
throw util::exception("Reading from " + intersection_class_file.string() +
" failed.");
}
{
util::SimpleLogger().Write(logINFO) << "Loading Entry Classes";
std::vector<util::guidance::EntryClass> entry_classes;
if (!util::deserializeVector(intersection_stream, entry_classes))
throw util::exception("Reading from " + intersection_class_file.string() +
" failed.");
m_entry_class_table.resize(entry_classes.size());
std::copy(entry_classes.begin(), entry_classes.end(), &m_entry_class_table[0]);
}
}
public:
virtual ~InternalDataFacade()
{
m_static_rtree.reset();
m_geospatial_query.reset();
}
explicit InternalDataFacade(const storage::StorageConfig &config)
{
ram_index_path = config.ram_index_path;
file_index_path = config.file_index_path;
util::SimpleLogger().Write() << "loading graph data";
LoadGraph(config.hsgr_data_path);
util::SimpleLogger().Write() << "loading edge information";
LoadNodeAndEdgeInformation(config.nodes_data_path, config.edges_data_path);
util::SimpleLogger().Write() << "loading core information";
LoadCoreInformation(config.core_data_path);
util::SimpleLogger().Write() << "loading geometries";
LoadGeometries(config.geometries_path);
util::SimpleLogger().Write() << "loading datasource info";
LoadDatasourceInfo(config.datasource_names_path, config.datasource_indexes_path);
util::SimpleLogger().Write() << "loading timestamp";
LoadTimestamp(config.timestamp_path);
util::SimpleLogger().Write() << "loading profile properties";
LoadProfileProperties(config.properties_path);
util::SimpleLogger().Write() << "loading street names";
LoadStreetNames(config.names_data_path);
util::SimpleLogger().Write() << "loading lane tags";
LoadLaneDescriptions(config.turn_lane_description_path);
util::SimpleLogger().Write() << "loading rtree";
LoadRTree();
util::SimpleLogger().Write() << "loading intersection class data";
LoadIntersectionClasses(config.intersection_class_path);
util::SimpleLogger().Write() << "Loading Lane Data Pairs";
LoadLaneTupleIdPairs(config.turn_lane_data_path);
}
// search graph access
unsigned GetNumberOfNodes() const override final { return m_query_graph->GetNumberOfNodes(); }
unsigned GetNumberOfEdges() const override final { return m_query_graph->GetNumberOfEdges(); }
unsigned GetOutDegree(const NodeID n) const override final
{
return m_query_graph->GetOutDegree(n);
}
NodeID GetTarget(const EdgeID e) const override final { return m_query_graph->GetTarget(e); }
EdgeData &GetEdgeData(const EdgeID e) const override final
{
return m_query_graph->GetEdgeData(e);
}
EdgeID BeginEdges(const NodeID n) const override final { return m_query_graph->BeginEdges(n); }
EdgeID EndEdges(const NodeID n) const override final { return m_query_graph->EndEdges(n); }
EdgeRange GetAdjacentEdgeRange(const NodeID node) const override final
{
return m_query_graph->GetAdjacentEdgeRange(node);
}
// searches for a specific edge
EdgeID FindEdge(const NodeID from, const NodeID to) const override final
{
return m_query_graph->FindEdge(from, to);
}
EdgeID FindEdgeInEitherDirection(const NodeID from, const NodeID to) const override final
{
return m_query_graph->FindEdgeInEitherDirection(from, to);
}
EdgeID
FindEdgeIndicateIfReverse(const NodeID from, const NodeID to, bool &result) const override final
{
return m_query_graph->FindEdgeIndicateIfReverse(from, to, result);
}
EdgeID FindSmallestEdge(const NodeID from,
const NodeID to,
std::function<bool(EdgeData)> filter) const override final
{
return m_query_graph->FindSmallestEdge(from, to, filter);
}
// node and edge information access
util::Coordinate GetCoordinateOfNode(const unsigned id) const override final
{
return m_coordinate_list[id];
}
OSMNodeID GetOSMNodeIDOfNode(const unsigned id) const override final
{
return m_osmnodeid_list.at(id);
}
extractor::guidance::TurnInstruction
GetTurnInstructionForEdgeID(const unsigned id) const override final
{
return m_turn_instruction_list.at(id);
}
extractor::TravelMode GetTravelModeForEdgeID(const unsigned id) const override final
{
return m_travel_mode_list.at(id);
}
std::vector<RTreeLeaf> GetEdgesInBox(const util::Coordinate south_west,
const util::Coordinate north_east) const override final
{
BOOST_ASSERT(m_geospatial_query.get());
const util::RectangleInt2D bbox{
south_west.lon, north_east.lon, south_west.lat, north_east.lat};
return m_geospatial_query->Search(bbox);
}
std::vector<PhantomNodeWithDistance>
NearestPhantomNodesInRange(const util::Coordinate input_coordinate,
const float max_distance) const override final
{
BOOST_ASSERT(m_geospatial_query.get());
return m_geospatial_query->NearestPhantomNodesInRange(input_coordinate, max_distance);
}
std::vector<PhantomNodeWithDistance>
NearestPhantomNodesInRange(const util::Coordinate input_coordinate,
const float max_distance,
const int bearing,
const int bearing_range) const override final
{
BOOST_ASSERT(m_geospatial_query.get());
return m_geospatial_query->NearestPhantomNodesInRange(
input_coordinate, max_distance, bearing, bearing_range);
}
std::vector<PhantomNodeWithDistance>
NearestPhantomNodes(const util::Coordinate input_coordinate,
const unsigned max_results) const override final
{
BOOST_ASSERT(m_geospatial_query.get());
return m_geospatial_query->NearestPhantomNodes(input_coordinate, max_results);
}
std::vector<PhantomNodeWithDistance>
NearestPhantomNodes(const util::Coordinate input_coordinate,
const unsigned max_results,
const double max_distance) const override final
{
BOOST_ASSERT(m_geospatial_query.get());
return m_geospatial_query->NearestPhantomNodes(input_coordinate, max_results, max_distance);
}
std::vector<PhantomNodeWithDistance>
NearestPhantomNodes(const util::Coordinate input_coordinate,
const unsigned max_results,
const int bearing,
const int bearing_range) const override final
{
BOOST_ASSERT(m_geospatial_query.get());
return m_geospatial_query->NearestPhantomNodes(
input_coordinate, max_results, bearing, bearing_range);
}
std::vector<PhantomNodeWithDistance>
NearestPhantomNodes(const util::Coordinate input_coordinate,
const unsigned max_results,
const double max_distance,
const int bearing,
const int bearing_range) const override final
{
BOOST_ASSERT(m_geospatial_query.get());
return m_geospatial_query->NearestPhantomNodes(
input_coordinate, max_results, max_distance, bearing, bearing_range);
}
std::pair<PhantomNode, PhantomNode> NearestPhantomNodeWithAlternativeFromBigComponent(
const util::Coordinate input_coordinate, const double max_distance) const override final
{
BOOST_ASSERT(m_geospatial_query.get());
return m_geospatial_query->NearestPhantomNodeWithAlternativeFromBigComponent(
input_coordinate, max_distance);
}
std::pair<PhantomNode, PhantomNode> NearestPhantomNodeWithAlternativeFromBigComponent(
const util::Coordinate input_coordinate) const override final
{
BOOST_ASSERT(m_geospatial_query.get());
return m_geospatial_query->NearestPhantomNodeWithAlternativeFromBigComponent(
input_coordinate);
}
std::pair<PhantomNode, PhantomNode>
NearestPhantomNodeWithAlternativeFromBigComponent(const util::Coordinate input_coordinate,
const double max_distance,
const int bearing,
const int bearing_range) const override final
{
BOOST_ASSERT(m_geospatial_query.get());
return m_geospatial_query->NearestPhantomNodeWithAlternativeFromBigComponent(
input_coordinate, max_distance, bearing, bearing_range);
}
std::pair<PhantomNode, PhantomNode>
NearestPhantomNodeWithAlternativeFromBigComponent(const util::Coordinate input_coordinate,
const int bearing,
const int bearing_range) const override final
{
BOOST_ASSERT(m_geospatial_query.get());
return m_geospatial_query->NearestPhantomNodeWithAlternativeFromBigComponent(
input_coordinate, bearing, bearing_range);
}
unsigned GetCheckSum() const override final { return m_check_sum; }
unsigned GetNameIndexFromEdgeID(const unsigned id) const override final
{
return m_name_ID_list.at(id);
}
std::string GetNameForID(const unsigned name_id) const override final
{
if (std::numeric_limits<unsigned>::max() == name_id)
{
return "";
}
auto range = m_name_table.GetRange(name_id);
std::string result;
result.reserve(range.size());
if (range.begin() != range.end())
{
result.resize(range.back() - range.front() + 1);
std::copy(m_names_char_list.begin() + range.front(),
m_names_char_list.begin() + range.back() + 1,
result.begin());
}
return result;
}
std::string GetRefForID(const unsigned name_id) const override final
{
// We store the ref after the name, destination and pronunciation of a street.
// We do this to get around the street length limit of 255 which would hit
// if we concatenate these. Order (see extractor_callbacks):
// name (0), destination (1), pronunciation (2), ref (3)
return GetNameForID(name_id + 3);
}
std::string GetPronunciationForID(const unsigned name_id) const override final
{
// We store the pronunciation after the name and destination of a street.
// We do this to get around the street length limit of 255 which would hit
// if we concatenate these. Order (see extractor_callbacks):
// name (0), destination (1), pronunciation (2)
return GetNameForID(name_id + 2);
}
std::string GetDestinationsForID(const unsigned name_id) const override final
{
// We store the destination after the name of a street.
// We do this to get around the street length limit of 255 which would hit
// if we concatenate these. Order (see extractor_callbacks):
// name (0), destination (1), pronunciation (2)
return GetNameForID(name_id + 1);
}
virtual GeometryID GetGeometryIndexForEdgeID(const unsigned id) const override final
{
return m_via_geometry_list.at(id);
}
virtual std::size_t GetCoreSize() const override final { return m_is_core_node.size(); }
virtual bool IsCoreNode(const NodeID id) const override final
{
if (m_is_core_node.size() > 0)
{
return m_is_core_node[id];
}
else
{
return false;
}
}
virtual std::vector<NodeID> GetUncompressedForwardGeometry(const EdgeID id) const override final
{
/*
* NodeID's for geometries are stored in one place for
* both forward and reverse segments along the same bi-
* directional edge. The m_geometry_indices stores
* refences to where to find the beginning of the bi-
* directional edge in the m_geometry_list vector.
* */
const unsigned begin = m_geometry_indices.at(id);
const unsigned end = m_geometry_indices.at(id + 1);
std::vector<NodeID> result_nodes;
result_nodes.reserve(end - begin);
std::for_each(m_geometry_list.begin() + begin,
m_geometry_list.begin() + end,
[&](const osrm::extractor::CompressedEdgeContainer::CompressedEdge &edge) {
result_nodes.emplace_back(edge.node_id);
});
return result_nodes;
}
virtual std::vector<NodeID> GetUncompressedReverseGeometry(const EdgeID id) const override final
{
/*
* NodeID's for geometries are stored in one place for
* both forward and reverse segments along the same bi-
* directional edge. The m_geometry_indices stores
* refences to where to find the beginning of the bi-
* directional edge in the m_geometry_list vector.
* */
const unsigned begin = m_geometry_indices.at(id);
const unsigned end = m_geometry_indices.at(id + 1);
std::vector<NodeID> result_nodes;
result_nodes.reserve(end - begin);
std::for_each(m_geometry_list.rbegin() + (m_geometry_list.size() - end),
m_geometry_list.rbegin() + (m_geometry_list.size() - begin),
[&](const osrm::extractor::CompressedEdgeContainer::CompressedEdge &edge) {
result_nodes.emplace_back(edge.node_id);
});
return result_nodes;
}
virtual std::vector<EdgeWeight>
GetUncompressedForwardWeights(const EdgeID id) const override final
{
/*
* EdgeWeights's for geometries are stored in one place for
* both forward and reverse segments along the same bi-
* directional edge. The m_geometry_indices stores
* refences to where to find the beginning of the bi-
* directional edge in the m_geometry_list vector. For
* forward weights of bi-directional edges, edges 2 to
* n of that edge need to be read.
*/
const unsigned begin = m_geometry_indices.at(id) + 1;
const unsigned end = m_geometry_indices.at(id + 1);
std::vector<EdgeWeight> result_weights;
result_weights.reserve(end - begin);
std::for_each(m_geometry_list.begin() + begin,
m_geometry_list.begin() + end,
[&](const osrm::extractor::CompressedEdgeContainer::CompressedEdge &edge) {
result_weights.emplace_back(edge.forward_weight);
});
return result_weights;
}
virtual std::vector<EdgeWeight>
GetUncompressedReverseWeights(const EdgeID id) const override final
{
/*
* EdgeWeights for geometries are stored in one place for
* both forward and reverse segments along the same bi-
* directional edge. The m_geometry_indices stores
* refences to where to find the beginning of the bi-
* directional edge in the m_geometry_list vector. For
* reverse weights of bi-directional edges, edges 1 to
* n-1 of that edge need to be read in reverse.
*/
const unsigned begin = m_geometry_indices.at(id);
const unsigned end = m_geometry_indices.at(id + 1) - 1;
std::vector<EdgeWeight> result_weights;
result_weights.reserve(end - begin);
std::for_each(m_geometry_list.rbegin() + (m_geometry_list.size() - end),
m_geometry_list.rbegin() + (m_geometry_list.size() - begin),
[&](const osrm::extractor::CompressedEdgeContainer::CompressedEdge &edge) {
result_weights.emplace_back(edge.reverse_weight);
});
return result_weights;
}
// Returns the data source ids that were used to supply the edge
// weights.
virtual std::vector<uint8_t>
GetUncompressedForwardDatasources(const EdgeID id) const override final
{
/*
* Data sources for geometries are stored in one place for
* both forward and reverse segments along the same bi-
* directional edge. The m_geometry_indices stores
* refences to where to find the beginning of the bi-
* directional edge in the m_geometry_list vector. For
* forward datasources of bi-directional edges, edges 2 to
* n of that edge need to be read.
*/
const unsigned begin = m_geometry_indices.at(id) + 1;
const unsigned end = m_geometry_indices.at(id + 1);
std::vector<uint8_t> result_datasources;
result_datasources.reserve(end - begin);
// If there was no datasource info, return an array of 0's.
if (m_datasource_list.empty())
{
for (unsigned i = 0; i < end - begin; ++i)
{
result_datasources.push_back(0);
}
}
else
{
std::for_each(
m_datasource_list.begin() + begin,
m_datasource_list.begin() + end,
[&](const uint8_t &datasource_id) { result_datasources.push_back(datasource_id); });
}
return result_datasources;
}
// Returns the data source ids that were used to supply the edge
// weights.
virtual std::vector<uint8_t>
GetUncompressedReverseDatasources(const EdgeID id) const override final
{
/*
* Datasources for geometries are stored in one place for
* both forward and reverse segments along the same bi-
* directional edge. The m_geometry_indices stores
* refences to where to find the beginning of the bi-
* directional edge in the m_geometry_list vector. For
* reverse datasources of bi-directional edges, edges 1 to
* n-1 of that edge need to be read in reverse.
*/
const unsigned begin = m_geometry_indices.at(id);
const unsigned end = m_geometry_indices.at(id + 1) - 1;
std::vector<uint8_t> result_datasources;
result_datasources.reserve(end - begin);
// If there was no datasource info, return an array of 0's.
if (m_datasource_list.empty())
{
for (unsigned i = 0; i < end - begin; ++i)
{
result_datasources.push_back(0);
}
}
else
{
std::for_each(
m_datasource_list.rbegin() + (m_datasource_list.size() - end),
m_datasource_list.rbegin() + (m_datasource_list.size() - begin),
[&](const uint8_t &datasource_id) { result_datasources.push_back(datasource_id); });
}
return result_datasources;
}
virtual std::string GetDatasourceName(const uint8_t datasource_name_id) const override final
{
BOOST_ASSERT(m_datasource_names.size() >= 1);
BOOST_ASSERT(m_datasource_names.size() > datasource_name_id);
return m_datasource_names[datasource_name_id];
}
std::string GetTimestamp() const override final { return m_timestamp; }
bool GetContinueStraightDefault() const override final
{
return m_profile_properties.continue_straight_at_waypoint;
}
BearingClassID GetBearingClassID(const NodeID nid) const override final
{
return m_bearing_class_id_table.at(nid);
}
util::guidance::BearingClass
GetBearingClass(const BearingClassID bearing_class_id) const override final
{
BOOST_ASSERT(bearing_class_id != INVALID_BEARING_CLASSID);
auto range = m_bearing_ranges_table.GetRange(bearing_class_id);
util::guidance::BearingClass result;
for (auto itr = m_bearing_values_table.begin() + range.front();
itr != m_bearing_values_table.begin() + range.back() + 1;
++itr)
result.add(*itr);
return result;
}
EntryClassID GetEntryClassID(const EdgeID eid) const override final
{
return m_entry_class_id_list.at(eid);
}
util::guidance::EntryClass GetEntryClass(const EntryClassID entry_class_id) const override final
{
return m_entry_class_table.at(entry_class_id);
}
bool hasLaneData(const EdgeID id) const override final
{
return m_lane_data_id[id] != INVALID_LANE_DATAID;
}
util::guidance::LaneTupleIdPair GetLaneData(const EdgeID id) const override final
{
BOOST_ASSERT(hasLaneData(id));
return m_lane_tuple_id_pairs[m_lane_data_id[id]];
}
extractor::guidance::TurnLaneDescription
GetTurnDescription(const LaneDescriptionID lane_description_id) const override final
{
if (lane_description_id == INVALID_LANE_DESCRIPTIONID)
return {};
else
return extractor::guidance::TurnLaneDescription(
m_lane_description_masks.begin() + m_lane_description_offsets[lane_description_id],
m_lane_description_masks.begin() +
m_lane_description_offsets[lane_description_id + 1]);
}
};
}
}
}
#endif // INTERNAL_DATAFACADE_HPP