osrm-backend/src/util/coordinate_calculation.cpp

418 lines
16 KiB
C++

#include "util/coordinate_calculation.hpp"
#include "util/cheap_ruler.hpp"
#include "util/coordinate.hpp"
#include "util/trigonometry_table.hpp"
#include "util/web_mercator.hpp"
#include <boost/assert.hpp>
#include <algorithm>
#include <iterator>
#include <limits>
#include <optional>
#include <utility>
namespace osrm::util::coordinate_calculation
{
namespace
{
class CheapRulerContainer
{
public:
CheapRulerContainer(const int number_of_rulers)
: cheap_ruler_cache(number_of_rulers, mapbox::cheap_ruler::CheapRuler(0)),
step(90.0 * COORDINATE_PRECISION / number_of_rulers)
{
for (int n = 0; n < number_of_rulers; n++)
{
cheap_ruler_cache[n] =
mapbox::cheap_ruler::CheapRuler(step * (n + 0.5) / COORDINATE_PRECISION);
}
};
mapbox::cheap_ruler::CheapRuler &getRuler(const FixedLatitude lat_1, const FixedLatitude lat_2)
{
auto lat = (lat_1 + lat_2) / util::FixedLatitude{2};
return getRuler(lat);
}
mapbox::cheap_ruler::CheapRuler &getRuler(const FixedLatitude lat)
{
BOOST_ASSERT(step > 2);
// the |lat| > 0 -> |lat|-1 > -1 -> (|lat|-1)/step > -1/step > -1/2 >= -1 -> bin >= 0
std::size_t bin = (std::abs(static_cast<int>(lat)) - 1) / step;
BOOST_ASSERT(bin < cheap_ruler_cache.size());
return cheap_ruler_cache[bin];
};
private:
std::vector<mapbox::cheap_ruler::CheapRuler> cheap_ruler_cache;
const int step;
};
static CheapRulerContainer cheap_ruler_container(1800);
} // namespace
// Does not project the coordinates!
std::uint64_t squaredEuclideanDistance(const Coordinate lhs, const Coordinate rhs)
{
std::int64_t d_lon = static_cast<std::int32_t>(lhs.lon - rhs.lon);
std::int64_t d_lat = static_cast<std::int32_t>(lhs.lat - rhs.lat);
std::int64_t sq_lon = d_lon * d_lon;
std::int64_t sq_lat = d_lat * d_lat;
std::uint64_t result = static_cast<std::uint64_t>(sq_lon + sq_lat);
return result;
}
double greatCircleDistance(const Coordinate coordinate_1, const Coordinate coordinate_2)
{
// Should be within 0.1% or so of Vincenty method (assuming 19 buckets are enough)
// Should be more faster and more precise than Haversine
const auto lon1 = static_cast<double>(util::toFloating(coordinate_1.lon));
const auto lat1 = static_cast<double>(util::toFloating(coordinate_1.lat));
const auto lon2 = static_cast<double>(util::toFloating(coordinate_2.lon));
const auto lat2 = static_cast<double>(util::toFloating(coordinate_2.lat));
return cheap_ruler_container.getRuler(coordinate_1.lat, coordinate_2.lat)
.distance({lon1, lat1}, {lon2, lat2});
}
double perpendicularDistance(const Coordinate segment_source,
const Coordinate segment_target,
const Coordinate query_location,
Coordinate &nearest_location,
double &ratio)
{
using namespace coordinate_calculation;
BOOST_ASSERT(query_location.IsValid());
FloatCoordinate projected_nearest;
std::tie(ratio, projected_nearest) =
projectPointOnSegment(web_mercator::fromWGS84(segment_source),
web_mercator::fromWGS84(segment_target),
web_mercator::fromWGS84(query_location));
nearest_location = web_mercator::toWGS84(projected_nearest);
const double approximate_distance = greatCircleDistance(query_location, nearest_location);
BOOST_ASSERT(0.0 <= approximate_distance);
return approximate_distance;
}
double perpendicularDistance(const Coordinate source_coordinate,
const Coordinate target_coordinate,
const Coordinate query_location)
{
double ratio;
Coordinate nearest_location;
return perpendicularDistance(
source_coordinate, target_coordinate, query_location, nearest_location, ratio);
}
Coordinate centroid(const Coordinate lhs, const Coordinate rhs)
{
Coordinate centroid;
// The coordinates of the midpoints are given by:
// x = (x1 + x2) /2 and y = (y1 + y2) /2.
centroid.lon = (lhs.lon + rhs.lon) / FixedLongitude{2};
centroid.lat = (lhs.lat + rhs.lat) / FixedLatitude{2};
return centroid;
}
double bearing(const Coordinate coordinate_1, const Coordinate coordinate_2)
{
const auto lon1 = static_cast<double>(util::toFloating(coordinate_1.lon));
const auto lat1 = static_cast<double>(util::toFloating(coordinate_1.lat));
const auto lon2 = static_cast<double>(util::toFloating(coordinate_2.lon));
const auto lat2 = static_cast<double>(util::toFloating(coordinate_2.lat));
const auto &ruler = cheap_ruler_container.getRuler(coordinate_1.lat, coordinate_2.lat);
auto result = ruler.bearing({lon1, lat1}, {lon2, lat2});
if (result < 0.0)
{
result += 360.0;
}
BOOST_ASSERT(0 <= result && result <= 360);
// If someone gives us two identical coordinates, then the concept of a bearing
// makes no sense. However, because it sometimes happens, we'll at least
// return a consistent value of 0 so that the behaviour isn't random.
BOOST_ASSERT(coordinate_1 != coordinate_2 || result == 0.);
return result;
}
double computeAngle(const Coordinate first, const Coordinate second, const Coordinate third)
{
using namespace coordinate_calculation;
if (first == second || second == third)
return 180;
BOOST_ASSERT(first.IsValid());
BOOST_ASSERT(second.IsValid());
BOOST_ASSERT(third.IsValid());
const double v1x = static_cast<double>(toFloating(first.lon - second.lon));
const double v1y =
web_mercator::latToY(toFloating(first.lat)) - web_mercator::latToY(toFloating(second.lat));
const double v2x = static_cast<double>(toFloating(third.lon - second.lon));
const double v2y =
web_mercator::latToY(toFloating(third.lat)) - web_mercator::latToY(toFloating(second.lat));
double angle = (atan2_lookup(v2y, v2x) - atan2_lookup(v1y, v1x)) * 180. * std::numbers::inv_pi;
while (angle < 0.)
{
angle += 360.;
}
BOOST_ASSERT(angle >= 0);
return angle;
}
std::optional<Coordinate>
circleCenter(const Coordinate C1, const Coordinate C2, const Coordinate C3)
{
// free after http://paulbourke.net/geometry/circlesphere/
// require three distinct points
if (C1 == C2 || C2 == C3 || C1 == C3)
{
return std::nullopt;
}
// define line through c1, c2 and c2,c3
const double C2C1_lat = static_cast<double>(toFloating(C2.lat - C1.lat)); // yDelta_a
const double C2C1_lon = static_cast<double>(toFloating(C2.lon - C1.lon)); // xDelta_a
const double C3C2_lat = static_cast<double>(toFloating(C3.lat - C2.lat)); // yDelta_b
const double C3C2_lon = static_cast<double>(toFloating(C3.lon - C2.lon)); // xDelta_b
// check for collinear points in X-Direction / Y-Direction
if ((std::abs(C2C1_lon) < std::numeric_limits<double>::epsilon() &&
std::abs(C3C2_lon) < std::numeric_limits<double>::epsilon()) ||
(std::abs(C2C1_lat) < std::numeric_limits<double>::epsilon() &&
std::abs(C3C2_lat) < std::numeric_limits<double>::epsilon()))
{
return std::nullopt;
}
else if (std::abs(C2C1_lon) < std::numeric_limits<double>::epsilon())
{
// vertical line C2C1
// due to c1.lon == c2.lon && c1.lon != c3.lon we can rearrange this way
BOOST_ASSERT(std::abs(static_cast<double>(toFloating(C3.lon - C1.lon))) >=
std::numeric_limits<double>::epsilon() &&
std::abs(static_cast<double>(toFloating(C2.lon - C3.lon))) >=
std::numeric_limits<double>::epsilon());
return circleCenter(C1, C3, C2);
}
else if (std::abs(C3C2_lon) < std::numeric_limits<double>::epsilon())
{
// vertical line C3C2
// due to c2.lon == c3.lon && c1.lon != c3.lon we can rearrange this way
// after rearrangement both deltas will be zero
BOOST_ASSERT(std::abs(static_cast<double>(toFloating(C1.lon - C2.lon))) >=
std::numeric_limits<double>::epsilon() &&
std::abs(static_cast<double>(toFloating(C3.lon - C1.lon))) >=
std::numeric_limits<double>::epsilon());
return circleCenter(C2, C1, C3);
}
else
{
const double C2C1_slope = C2C1_lat / C2C1_lon;
const double C3C2_slope = C3C2_lat / C3C2_lon;
if (std::abs(C2C1_slope) < std::numeric_limits<double>::epsilon())
{
// Three non-collinear points with C2,C1 on same latitude.
// Due to the x-values correct, we can swap C3 and C1 to obtain the correct slope value
return circleCenter(C3, C2, C1);
}
// valid slope values for both lines, calculate the center as intersection of the lines
// can this ever happen?
if (std::abs(C2C1_slope - C3C2_slope) < std::numeric_limits<double>::epsilon())
return std::nullopt;
const double C1_y = static_cast<double>(toFloating(C1.lat));
const double C1_x = static_cast<double>(toFloating(C1.lon));
const double C2_y = static_cast<double>(toFloating(C2.lat));
const double C2_x = static_cast<double>(toFloating(C2.lon));
const double C3_y = static_cast<double>(toFloating(C3.lat));
const double C3_x = static_cast<double>(toFloating(C3.lon));
const double lon = (C2C1_slope * C3C2_slope * (C1_y - C3_y) + C3C2_slope * (C1_x + C2_x) -
C2C1_slope * (C2_x + C3_x)) /
(2 * (C3C2_slope - C2C1_slope));
const double lat = (0.5 * (C1_x + C2_x) - lon) / C2C1_slope + 0.5 * (C1_y + C2_y);
if (lon < -180.0 || lon > 180.0 || lat < -90.0 || lat > 90.0)
return std::nullopt;
else
return Coordinate(FloatLongitude{lon}, FloatLatitude{lat});
}
}
double circleRadius(const Coordinate C1, const Coordinate C2, const Coordinate C3)
{
// a circle by three points requires thee distinct points
auto center = circleCenter(C1, C2, C3);
if (center)
return greatCircleDistance(C1, *center);
else
return std::numeric_limits<double>::infinity();
}
Coordinate interpolateLinear(double factor, const Coordinate from, const Coordinate to)
{
BOOST_ASSERT(0 <= factor && factor <= 1.0);
const auto from_lon = static_cast<std::int32_t>(from.lon);
const auto from_lat = static_cast<std::int32_t>(from.lat);
const auto to_lon = static_cast<std::int32_t>(to.lon);
const auto to_lat = static_cast<std::int32_t>(to.lat);
FixedLongitude interpolated_lon{
static_cast<std::int32_t>(from_lon + factor * (to_lon - from_lon))};
FixedLatitude interpolated_lat{
static_cast<std::int32_t>(from_lat + factor * (to_lat - from_lat))};
return {interpolated_lon, interpolated_lat};
}
// compute the signed area of a triangle
double signedArea(const Coordinate first_coordinate,
const Coordinate second_coordinate,
const Coordinate third_coordinate)
{
const auto lat_1 = static_cast<double>(toFloating(first_coordinate.lat));
const auto lon_1 = static_cast<double>(toFloating(first_coordinate.lon));
const auto lat_2 = static_cast<double>(toFloating(second_coordinate.lat));
const auto lon_2 = static_cast<double>(toFloating(second_coordinate.lon));
const auto lat_3 = static_cast<double>(toFloating(third_coordinate.lat));
const auto lon_3 = static_cast<double>(toFloating(third_coordinate.lon));
return 0.5 * (-lon_2 * lat_1 + lon_3 * lat_1 + lon_1 * lat_2 - lon_3 * lat_2 - lon_1 * lat_3 +
lon_2 * lat_3);
}
// check if a set of three coordinates is given in CCW order
bool isCCW(const Coordinate first_coordinate,
const Coordinate second_coordinate,
const Coordinate third_coordinate)
{
return signedArea(first_coordinate, second_coordinate, third_coordinate) > 0;
}
// find the closest distance between a coordinate and a segment
double findClosestDistance(const Coordinate coordinate,
const Coordinate segment_begin,
const Coordinate segment_end)
{
return greatCircleDistance(
coordinate, projectPointOnSegment(segment_begin, segment_end, coordinate).second);
}
// find the closes distance between two sets of coordinates
double findClosestDistance(const std::vector<Coordinate> &lhs, const std::vector<Coordinate> &rhs)
{
double current_min = std::numeric_limits<double>::max();
const auto compute_minimum_distance_in_rhs = [&current_min, &rhs](const Coordinate coordinate)
{
current_min =
std::min(current_min, findClosestDistance(coordinate, rhs.begin(), rhs.end()));
return false;
};
// NOLINTNEXTLINE(bugprone-unused-return-value)
[[maybe_unused]] auto _ =
std::find_if(std::begin(lhs), std::end(lhs), compute_minimum_distance_in_rhs);
return current_min;
}
std::vector<double> getDeviations(const std::vector<Coordinate> &from,
const std::vector<Coordinate> &to)
{
auto find_deviation = [&to](const Coordinate coordinate)
{ return findClosestDistance(coordinate, to.begin(), to.end()); };
std::vector<double> deviations_from;
deviations_from.reserve(from.size());
std::transform(
std::begin(from), std::end(from), std::back_inserter(deviations_from), find_deviation);
return deviations_from;
}
Coordinate rotateCCWAroundZero(Coordinate coordinate, double angle_in_radians)
{
/*
* a rotation around 0,0 in vector space is defined as
*
* | cos a -sin a | . | lon |
* | sin a cos a | | lat |
*
* resulting in cos a lon - sin a lon for the new longitude and sin a lon + cos a lat for the
* new latitude
*/
const auto cos_alpha = cos(angle_in_radians);
const auto sin_alpha = sin(angle_in_radians);
const auto lon = static_cast<double>(toFloating(coordinate.lon));
const auto lat = static_cast<double>(toFloating(coordinate.lat));
return {util::FloatLongitude{cos_alpha * lon - sin_alpha * lat},
util::FloatLatitude{sin_alpha * lon + cos_alpha * lat}};
}
Coordinate difference(const Coordinate lhs, const Coordinate rhs)
{
const auto lon_diff_int = static_cast<int>(lhs.lon) - static_cast<int>(rhs.lon);
const auto lat_diff_int = static_cast<int>(lhs.lat) - static_cast<int>(rhs.lat);
return {util::FixedLongitude{lon_diff_int}, util::FixedLatitude{lat_diff_int}};
}
double computeArea(const std::vector<Coordinate> &polygon)
{
using util::coordinate_calculation::greatCircleDistance;
if (polygon.empty())
return 0.;
BOOST_ASSERT(polygon.front() == polygon.back());
// Take the reference point with the smallest latitude.
// ⚠ ref_latitude is the standard parallel for the equirectangular projection
// that is not an area-preserving projection
const auto ref_point =
std::min_element(polygon.begin(),
polygon.end(),
[](const auto &lhs, const auto &rhs) { return lhs.lat < rhs.lat; });
const auto ref_latitude = ref_point->lat;
// Compute area of under a curve and a line that is parallel the equator with ref_latitude
// For closed curves it corresponds to the shoelace algorithm for polygon areas
double area = 0.;
auto first = polygon.begin();
auto previous_base = util::Coordinate{first->lon, ref_latitude};
auto previous_y = greatCircleDistance(previous_base, *first);
for (++first; first != polygon.end(); ++first)
{
BOOST_ASSERT(first->lat >= ref_latitude);
const auto current_base = util::Coordinate{first->lon, ref_latitude};
const auto current_y = greatCircleDistance(current_base, *first);
const auto chunk_area =
greatCircleDistance(previous_base, current_base) * (previous_y + current_y);
area += (current_base.lon >= previous_base.lon) ? chunk_area : -chunk_area;
previous_base = current_base;
previous_y = current_y;
}
return area / 2.;
}
} // namespace osrm::util::coordinate_calculation