osrm-backend/third_party/cheap-ruler-cpp-2.5.4/include/mapbox/cheap_ruler.hpp
2018-04-27 05:21:08 +02:00

355 lines
9.5 KiB
C++

#pragma once
#include <mapbox/geometry.hpp>
#include <cmath>
#include <cstdint>
#include <limits>
#include <tuple>
#include <utility>
namespace mapbox {
namespace cheap_ruler {
using box = geometry::box<double>;
using line_string = geometry::line_string<double>;
using linear_ring = geometry::linear_ring<double>;
using multi_line_string = geometry::multi_line_string<double>;
using point = geometry::point<double>;
using polygon = geometry::polygon<double>;
class CheapRuler {
public:
enum Unit {
Kilometers,
Miles,
NauticalMiles,
Meters,
Metres = Meters,
Yards,
Feet,
Inches
};
//
// A collection of very fast approximations to common geodesic measurements. Useful
// for performance-sensitive code that measures things on a city scale. Point coordinates
// are in the [x = longitude, y = latitude] form.
//
explicit CheapRuler(double latitude, Unit unit = Kilometers) {
double m = 0.;
switch (unit) {
case Kilometers:
m = 1.;
break;
case Miles:
m = 1000. / 1609.344;
break;
case NauticalMiles:
m = 1000. / 1852.;
break;
case Meters:
m = 1000.;
break;
case Yards:
m = 1000. / 0.9144;
break;
case Feet:
m = 1000. / 0.3048;
break;
case Inches:
m = 1000. / 0.0254;
break;
}
auto cos = std::cos(latitude * M_PI / 180.);
auto cos2 = 2. * cos * cos - 1.;
auto cos3 = 2. * cos * cos2 - cos;
auto cos4 = 2. * cos * cos3 - cos2;
auto cos5 = 2. * cos * cos4 - cos3;
// multipliers for converting longitude and latitude
// degrees into distance (http://1.usa.gov/1Wb1bv7)
kx = m * (111.41513 * cos - 0.09455 * cos3 + 0.00012 * cos5);
ky = m * (111.13209 - 0.56605 * cos2 + 0.0012 * cos4);
}
static CheapRuler fromTile(uint32_t y, uint32_t z) {
double n = M_PI * (1. - 2. * (y + 0.5) / std::pow(2., z));
double latitude = std::atan(0.5 * (std::exp(n) - std::exp(-n))) * 180. / M_PI;
return CheapRuler(latitude);
}
//
// Given two points of the form [x = longitude, y = latitude], returns the distance.
//
double distance(point a, point b) {
auto dx = (a.x - b.x) * kx;
auto dy = (a.y - b.y) * ky;
return std::sqrt(dx * dx + dy * dy);
}
//
// Returns the bearing between two points in angles.
//
double bearing(point a, point b) {
auto dx = (b.x - a.x) * kx;
auto dy = (b.y - a.y) * ky;
if (!dx && !dy) {
return 0.;
}
auto value = std::atan2(dx, dy) * 180. / M_PI;
if (value > 180.) {
value -= 360.;
}
return value;
}
//
// Returns a new point given distance and bearing from the starting point.
//
point destination(point origin, double dist, double bearing_) {
auto a = (90. - bearing_) * M_PI / 180.;
return offset(origin, std::cos(a) * dist, std::sin(a) * dist);
}
//
// Returns a new point given easting and northing offsets from the starting point.
//
point offset(point origin, double dx, double dy) {
return point(origin.x + dx / kx, origin.y + dy / ky);
}
//
// Given a line (an array of points), returns the total line distance.
//
double lineDistance(const line_string& points) {
double total = 0.;
for (unsigned i = 0; i < points.size() - 1; ++i) {
total += distance(points[i], points[i + 1]);
}
return total;
}
//
// Given a polygon (an array of rings, where each ring is an array of points),
// returns the area.
//
double area(polygon poly) {
double sum = 0.;
for (unsigned i = 0; i < poly.size(); ++i) {
auto& ring = poly[i];
for (unsigned j = 0, len = ring.size(), k = len - 1; j < len; k = j++) {
sum += (ring[j].x - ring[k].x) * (ring[j].y + ring[k].y) * (i ? -1. : 1.);
}
}
return (std::abs(sum) / 2.) * kx * ky;
}
//
// Returns the point at a specified distance along the line.
//
point along(const line_string& line, double dist) {
double sum = 0.;
if (dist <= 0.) {
return line[0];
}
for (unsigned i = 0; i < line.size() - 1; ++i) {
auto p0 = line[i];
auto p1 = line[i + 1];
auto d = distance(p0, p1);
sum += d;
if (sum > dist) {
return interpolate(p0, p1, (dist - (sum - d)) / d);
}
}
return line[line.size() - 1];
}
//
// Returns a tuple of the form <point, index, t> where point is closest point on the line
// from the given point, index is the start index of the segment with the closest point,
// and t is a parameter from 0 to 1 that indicates where the closest point is on that segment.
//
std::tuple<point, unsigned, double> pointOnLine(const line_string& line, point p) {
double minDist = std::numeric_limits<double>::infinity();
double minX = 0., minY = 0., minI = 0., minT = 0.;
for (unsigned i = 0; i < line.size() - 1; ++i) {
auto t = 0.;
auto x = line[i].x;
auto y = line[i].y;
auto dx = (line[i + 1].x - x) * kx;
auto dy = (line[i + 1].y - y) * ky;
if (dx != 0. || dy != 0.) {
t = ((p.x - x) * kx * dx + (p.y - y) * ky * dy) / (dx * dx + dy * dy);
if (t > 1) {
x = line[i + 1].x;
y = line[i + 1].y;
} else if (t > 0) {
x += (dx / kx) * t;
y += (dy / ky) * t;
}
}
dx = (p.x - x) * kx;
dy = (p.y - y) * ky;
auto sqDist = dx * dx + dy * dy;
if (sqDist < minDist) {
minDist = sqDist;
minX = x;
minY = y;
minI = i;
minT = t;
}
}
return std::make_tuple(
point(minX, minY), minI, ::fmax(0., ::fmin(1., minT)));
}
//
// Returns a part of the given line between the start and the stop points (or their closest
// points on the line).
//
line_string lineSlice(point start, point stop, const line_string& line) {
auto getPoint = [](auto tuple) { return std::get<0>(tuple); };
auto getIndex = [](auto tuple) { return std::get<1>(tuple); };
auto getT = [](auto tuple) { return std::get<2>(tuple); };
auto p1 = pointOnLine(line, start);
auto p2 = pointOnLine(line, stop);
if (getIndex(p1) > getIndex(p2) || (getIndex(p1) == getIndex(p2) && getT(p1) > getT(p2))) {
auto tmp = p1;
p1 = p2;
p2 = tmp;
}
line_string slice = { getPoint(p1) };
auto l = getIndex(p1) + 1;
auto r = getIndex(p2);
if (line[l] != slice[0] && l <= r) {
slice.push_back(line[l]);
}
for (unsigned i = l + 1; i <= r; ++i) {
slice.push_back(line[i]);
}
if (line[r] != getPoint(p2)) {
slice.push_back(getPoint(p2));
}
return slice;
};
//
// Returns a part of the given line between the start and the stop points
// indicated by distance along the line.
//
line_string lineSliceAlong(double start, double stop, const line_string& line) {
double sum = 0.;
line_string slice;
for (unsigned i = 0; i < line.size() - 1; ++i) {
auto p0 = line[i];
auto p1 = line[i + 1];
auto d = distance(p0, p1);
sum += d;
if (sum > start && slice.size() == 0) {
slice.push_back(interpolate(p0, p1, (start - (sum - d)) / d));
}
if (sum >= stop) {
slice.push_back(interpolate(p0, p1, (stop - (sum - d)) / d));
return slice;
}
if (sum > start) {
slice.push_back(p1);
}
}
return slice;
};
//
// Given a point, returns a bounding box object ([w, s, e, n])
// created from the given point buffered by a given distance.
//
box bufferPoint(point p, double buffer) {
auto v = buffer / ky;
auto h = buffer / kx;
return box(
point(p.x - h, p.y - v),
point(p.x + h, p.y + v)
);
}
//
// Given a bounding box, returns the box buffered by a given distance.
//
box bufferBBox(box bbox, double buffer) {
auto v = buffer / ky;
auto h = buffer / kx;
return box(
point(bbox.min.x - h, bbox.min.y - v),
point(bbox.max.x + h, bbox.max.y + v)
);
}
//
// Returns true if the given point is inside in the given bounding box, otherwise false.
//
bool insideBBox(point p, box bbox) {
return p.x >= bbox.min.x &&
p.x <= bbox.max.x &&
p.y >= bbox.min.y &&
p.y <= bbox.max.y;
}
static point interpolate(point a, point b, double t) {
double dx = b.x - a.x;
double dy = b.y - a.y;
return point(a.x + dx * t, a.y + dy * t);
}
private:
double ky;
double kx;
};
} // namespace cheap_ruler
} // namespace mapbox