osrm-backend/DataStructures/BinaryHeap.h
2012-09-19 11:25:51 +02:00

265 lines
6.8 KiB
C++

/*
open source routing machine
Copyright (C) Dennis Luxen, others 2010
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU AFFERO General Public License as published by
the Free Software Foundation; either version 3 of the License, or
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
or see http://www.gnu.org/licenses/agpl.txt.
*/
#ifndef BINARYHEAP_H_INCLUDED
#define BINARYHEAP_H_INCLUDED
//Not compatible with non contiguous node ids
#include <cassert>
#include <limits>
#include <vector>
#include <algorithm>
#include <map>
#include <boost/unordered_map.hpp>
template< typename NodeID, typename Key >
class ArrayStorage {
public:
ArrayStorage( size_t size ) : positions( new Key[size] ) {
memset(positions, 0, size*sizeof(Key));
}
~ArrayStorage() {
delete[] positions;
}
Key &operator[]( NodeID node ) {
return positions[node];
}
void Clear() {}
private:
Key* positions;
};
template< typename NodeID, typename Key >
class MapStorage {
public:
MapStorage( size_t ) {}
Key &operator[]( NodeID node ) {
return nodes[node];
}
void Clear() {
nodes.clear();
}
private:
std::map< NodeID, Key > nodes;
};
template< typename NodeID, typename Key >
class UnorderedMapStorage {
public:
UnorderedMapStorage( size_t ) { }
Key &operator[]( NodeID node ) {
return nodes[node];
}
void Clear() {
nodes.clear();
}
private:
boost::unordered_map< NodeID, Key > nodes;
};
template<typename NodeID = unsigned>
struct _SimpleHeapData {
NodeID parent;
_SimpleHeapData( NodeID p ) : parent(p) { }
};
template < typename NodeID, typename Key, typename Weight, typename Data, typename IndexStorage = ArrayStorage<NodeID, NodeID> >
class BinaryHeap {
private:
BinaryHeap( const BinaryHeap& right );
void operator=( const BinaryHeap& right );
public:
typedef Weight WeightType;
typedef Data DataType;
BinaryHeap( size_t maxID )
: nodeIndex( maxID ) {
Clear();
}
void Clear() {
heap.resize( 1 );
insertedNodes.clear();
heap[0].weight = std::numeric_limits< Weight >::min();
nodeIndex.Clear();
}
Key Size() const {
return static_cast<Key>( heap.size() - 1 );
}
void Insert( NodeID node, Weight weight, const Data &data ) {
HeapElement element;
element.index = static_cast<NodeID>(insertedNodes.size());
element.weight = weight;
const Key key = static_cast<Key>(heap.size());
heap.push_back( element );
insertedNodes.push_back( HeapNode( node, key, weight, data ) );
nodeIndex[node] = element.index;
Upheap( key );
CheckHeap();
}
Data& GetData( NodeID node ) {
const Key index = nodeIndex[node];
return insertedNodes[index].data;
}
Weight& GetKey( NodeID node ) {
const Key index = nodeIndex[node];
return insertedNodes[index].weight;
}
bool WasRemoved( NodeID node ) {
assert( WasInserted( node ) );
const Key index = nodeIndex[node];
return insertedNodes[index].key == 0;
}
bool WasInserted( NodeID node ) {
const Key index = nodeIndex[node];
if ( index >= static_cast<Key> (insertedNodes.size()) )
return false;
return insertedNodes[index].node == node;
}
NodeID Min() const {
assert( heap.size() > 1 );
return insertedNodes[heap[1].index].node;
}
NodeID DeleteMin() {
assert( heap.size() > 1 );
const Key removedIndex = heap[1].index;
heap[1] = heap[heap.size()-1];
heap.pop_back();
if ( heap.size() > 1 )
Downheap( 1 );
insertedNodes[removedIndex].key = 0;
CheckHeap();
return insertedNodes[removedIndex].node;
}
void DeleteAll() {
for ( typename std::vector< HeapElement >::iterator i = heap.begin() + 1, iend = heap.end(); i != iend; ++i )
insertedNodes[i->index].key = 0;
heap.resize( 1 );
heap[0].weight = (std::numeric_limits< Weight >::min)();
}
void DecreaseKey( NodeID node, Weight weight ) {
assert( UINT_MAX != node );
const Key index = nodeIndex[node];
Key key = insertedNodes[index].key;
assert ( key >= 0 );
insertedNodes[index].weight = weight;
heap[key].weight = weight;
Upheap( key );
CheckHeap();
}
private:
class HeapNode {
public:
HeapNode() {
}
HeapNode( NodeID n, Key k, Weight w, Data d )
: node( n ), key( k ), weight( w ), data( d ) {
}
NodeID node;
Key key;
Weight weight;
Data data;
};
struct HeapElement {
Key index;
Weight weight;
};
std::vector< HeapNode > insertedNodes;
std::vector< HeapElement > heap;
IndexStorage nodeIndex;
void Downheap( Key key ) {
const Key droppingIndex = heap[key].index;
const Weight weight = heap[key].weight;
Key nextKey = key << 1;
while ( nextKey < static_cast<Key>( heap.size() ) ) {
const Key nextKeyOther = nextKey + 1;
if ( ( nextKeyOther < static_cast<Key> ( heap.size() ) )&& ( heap[nextKey].weight > heap[nextKeyOther].weight) )
nextKey = nextKeyOther;
if ( weight <= heap[nextKey].weight )
break;
heap[key] = heap[nextKey];
insertedNodes[heap[key].index].key = key;
key = nextKey;
nextKey <<= 1;
}
heap[key].index = droppingIndex;
heap[key].weight = weight;
insertedNodes[droppingIndex].key = key;
}
void Upheap( Key key ) {
const Key risingIndex = heap[key].index;
const Weight weight = heap[key].weight;
Key nextKey = key >> 1;
while ( heap[nextKey].weight > weight ) {
assert( nextKey != 0 );
heap[key] = heap[nextKey];
insertedNodes[heap[key].index].key = key;
key = nextKey;
nextKey >>= 1;
}
heap[key].index = risingIndex;
heap[key].weight = weight;
insertedNodes[risingIndex].key = key;
}
void CheckHeap() {
#ifndef NDEBUG
for ( Key i = 2; i < (Key) heap.size(); ++i ) {
assert( heap[i].weight >= heap[i >> 1].weight );
}
#endif
}
};
#endif //#ifndef BINARYHEAP_H_INCLUDED