osrm-backend/include/engine/guidance/assemble_leg.hpp
2024-05-06 09:14:46 +02:00

243 lines
9.5 KiB
C++

#ifndef ENGINE_GUIDANCE_ASSEMBLE_LEG_HPP_
#define ENGINE_GUIDANCE_ASSEMBLE_LEG_HPP_
#include "engine/datafacade/datafacade_base.hpp"
#include "engine/guidance/leg_geometry.hpp"
#include "engine/guidance/route_leg.hpp"
#include "engine/guidance/route_step.hpp"
#include "engine/internal_route_result.hpp"
#include "util/coordinate_calculation.hpp"
#include "util/typedefs.hpp"
#include <boost/algorithm/string/join.hpp>
#include <boost/range/adaptor/filtered.hpp>
#include <boost/range/adaptor/transformed.hpp>
#include <cstddef>
#include <cstdint>
#include <algorithm>
#include <array>
#include <numeric>
#include <string>
#include <utility>
#include <vector>
namespace osrm::engine::guidance
{
namespace detail
{
const constexpr std::size_t MAX_USED_SEGMENTS = 2;
struct NamedSegment
{
EdgeDuration duration;
std::uint32_t position;
std::uint32_t name_id;
};
template <std::size_t SegmentNumber>
std::array<std::uint32_t, SegmentNumber> summarizeRoute(const datafacade::BaseDataFacade &facade,
const std::vector<PathData> &route_data,
const PhantomNode &target_node,
const bool target_traversed_in_reverse)
{
// merges segments with same name id
const auto collapse_segments = [](std::vector<NamedSegment> &segments)
{
auto out = segments.begin();
auto end = segments.end();
// Do nothing if we were given an empty array
if (out == end)
{
return end;
}
for (auto in = std::next(out); in != end; ++in)
{
if (in->name_id == out->name_id)
{
out->duration += in->duration;
}
else
{
++out;
BOOST_ASSERT(out != end);
*out = *in;
}
}
BOOST_ASSERT(out != end);
return ++out;
};
std::vector<NamedSegment> segments(route_data.size());
std::uint32_t index = 0;
std::transform(route_data.begin(),
route_data.end(),
segments.begin(),
[&index, &facade](const PathData &point)
{
return NamedSegment{point.duration_until_turn,
index++,
facade.GetNameIndex(point.from_edge_based_node)};
});
const auto target_duration =
target_traversed_in_reverse ? target_node.reverse_duration : target_node.forward_duration;
const auto target_node_id = target_traversed_in_reverse ? target_node.reverse_segment_id.id
: target_node.forward_segment_id.id;
if (target_duration > EdgeDuration{1})
segments.push_back({target_duration, index++, facade.GetNameIndex(target_node_id)});
// this makes sure that the segment with the lowest position comes first
std::sort(segments.begin(),
segments.end(),
[](const NamedSegment &lhs, const NamedSegment &rhs)
{
return lhs.name_id < rhs.name_id ||
(lhs.name_id == rhs.name_id && lhs.position < rhs.position);
});
auto new_end = collapse_segments(segments);
segments.resize(new_end - segments.begin());
// Filter out segments with an empty name (name_id == 0)
new_end = std::remove_if(segments.begin(),
segments.end(),
[](const NamedSegment &segment) { return segment.name_id == 0; });
segments.resize(new_end - segments.begin());
// sort descending
std::sort(segments.begin(),
segments.end(),
[](const NamedSegment &lhs, const NamedSegment &rhs)
{
return lhs.duration > rhs.duration ||
(lhs.duration == rhs.duration && lhs.position < rhs.position);
});
// make sure the segments are sorted by position
segments.resize(std::min(segments.size(), SegmentNumber));
std::sort(segments.begin(),
segments.end(),
[](const NamedSegment &lhs, const NamedSegment &rhs)
{ return lhs.position < rhs.position; });
std::array<std::uint32_t, SegmentNumber> summary;
std::fill(summary.begin(), summary.end(), EMPTY_NAMEID);
std::transform(segments.begin(),
segments.end(),
summary.begin(),
[](const NamedSegment &segment) { return segment.name_id; });
return summary;
}
} // namespace detail
inline std::string assembleSummary(const datafacade::BaseDataFacade &facade,
const std::vector<PathData> &route_data,
const PhantomNode &target_node,
const bool target_traversed_in_reverse)
{
auto summary_array = detail::summarizeRoute<detail::MAX_USED_SEGMENTS>(
facade, route_data, target_node, target_traversed_in_reverse);
BOOST_ASSERT(detail::MAX_USED_SEGMENTS > 0);
BOOST_ASSERT(summary_array.begin() != summary_array.end());
// transform a name_id into a string containing either the name, or -if the name is empty-
// the reference.
const auto name_id_to_string = [&](const NameID name_id)
{
const auto name = facade.GetNameForID(name_id);
if (!name.empty())
return std::string(name);
else
{
const auto ref = facade.GetRefForID(name_id);
return std::string(ref);
}
};
const auto not_empty = [&](const std::string &name) { return !name.empty(); };
const auto summary_names = summary_array | boost::adaptors::transformed(name_id_to_string) |
boost::adaptors::filtered(not_empty);
return boost::algorithm::join(summary_names, ", ");
}
inline RouteLeg assembleLeg(const datafacade::BaseDataFacade &facade,
const std::vector<PathData> &route_data,
const PhantomNode &source_node,
const PhantomNode &target_node,
const bool target_traversed_in_reverse)
{
auto distance = 0.;
auto prev_coordinate = source_node.location;
for (const auto &path_point : route_data)
{
auto coordinate = facade.GetCoordinateOfNode(path_point.turn_via_node);
distance += util::coordinate_calculation::greatCircleDistance(prev_coordinate, coordinate);
prev_coordinate = coordinate;
}
distance +=
util::coordinate_calculation::greatCircleDistance(prev_coordinate, target_node.location);
const auto target_duration =
(target_traversed_in_reverse ? target_node.reverse_duration : target_node.forward_duration);
const auto target_weight =
(target_traversed_in_reverse ? target_node.reverse_weight : target_node.forward_weight);
auto duration = std::accumulate(route_data.begin(),
route_data.end(),
0,
[](const double sum, const PathData &data)
{ return sum + from_alias<double>(data.duration_until_turn); });
auto weight = std::accumulate(route_data.begin(),
route_data.end(),
0,
[](const double sum, const PathData &data)
{ return sum + from_alias<double>(data.weight_until_turn); });
// s
// |
// Given a route a---b---c where there is a right turn at c.
// |
// d
// |--t
// e
// (a, b, c) gets compressed to (a,c)
// (c, d, e) gets compressed to (c,e)
// The duration of the turn (a,c) -> (c,e) will be the duration of (a,c) (e.g. the duration
// of (a,b,c)).
// The phantom node of s will contain:
// `forward_duration`: duration of (a,s)
// `forward_offset`: 0 (its the first segment)
// The phantom node of t will contain:
// `forward_duration`: duration of (d,t)
// `forward_offset`: duration of (c, d)
// path_data will have entries for (s,b), (b, c), (c, d) but (d, t) is only
// caputed by the phantom node. So we need to add the target duration here.
// On local segments, the target duration is already part of the duration, however.
duration = duration + from_alias<double>(target_duration);
weight = weight + from_alias<double>(target_weight);
if (route_data.empty())
{
weight -= from_alias<double>(target_traversed_in_reverse ? source_node.reverse_weight
: source_node.forward_weight);
duration -= from_alias<double>(target_traversed_in_reverse ? source_node.reverse_duration
: source_node.forward_duration);
// use rectified linear unit function to avoid negative duration values
// due to flooring errors in phantom snapping
duration = std::max(0, duration);
}
return RouteLeg{std::round(distance * 10.) / 10.,
duration / 10.,
weight / facade.GetWeightMultiplier(),
"",
{}};
}
} // namespace osrm::engine::guidance
#endif // ENGINE_GUIDANCE_SEGMENT_LIST_HPP_