osrm-backend/scripts/ci/e2e_benchmark.py
2024-06-16 09:00:22 +02:00

132 lines
5.9 KiB
Python

import requests
import sys
import random
from collections import defaultdict
import os
import csv
import numpy as np
import time
import argparse
from scipy import stats
class BenchmarkRunner:
def __init__(self, gps_traces_file_path):
self.coordinates = []
self.tracks = defaultdict(list)
gps_traces_file_path = os.path.expanduser(gps_traces_file_path)
with open(gps_traces_file_path, 'r') as file:
reader = csv.DictReader(file)
for row in reader:
coord = (float(row['Latitude']), float(row['Longitude']))
self.coordinates.append(coord)
self.tracks[row['TrackID']].append(coord)
self.track_ids = list(self.tracks.keys())
def run(self, benchmark_name, host, num_requests, warmup_requests=50):
for _ in range(warmup_requests):
url = self.make_url(host, benchmark_name)
_ = requests.get(url)
times = []
for _ in range(num_requests):
url = self.make_url(host, benchmark_name)
start_time = time.time()
response = requests.get(url)
end_time = time.time()
if response.status_code != 200:
if benchmark_name == 'match':
code = response.json()['code']
if code == 'NoSegment' or code == 'NoMatch':
continue
elif benchmark_name == 'route':
code = response.json()['code']
if code == 'NoRoute':
continue
raise Exception(f"Error: {response.status_code} {response.text}")
times.append((end_time - start_time) * 1000) # convert to ms
return times
def make_url(self, host, benchmark_name):
if benchmark_name == 'route':
start = random.choice(self.coordinates)
end = random.choice(self.coordinates)
start_coord = f"{start[1]:.6f},{start[0]:.6f}"
end_coord = f"{end[1]:.6f},{end[0]:.6f}"
return f"{host}/route/v1/driving/{start_coord};{end_coord}?overview=full&steps=true"
elif benchmark_name == 'table':
num_coords = random.randint(3, 100)
selected_coords = random.sample(self.coordinates, num_coords)
coords_str = ";".join([f"{coord[1]:.6f},{coord[0]:.6f}" for coord in selected_coords])
return f"{host}/table/v1/driving/{coords_str}"
elif benchmark_name == 'match':
num_coords = random.randint(50, 100)
track_id = random.choice(self.track_ids)
track_coords = self.tracks[track_id][:num_coords]
coords_str = ";".join([f"{coord[1]:.6f},{coord[0]:.6f}" for coord in track_coords])
radiues_str = ";".join([f"{random.randint(5, 20)}" for _ in range(len(track_coords))])
return f"{host}/match/v1/driving/{coords_str}?steps=true&radiuses={radiues_str}"
elif benchmark_name == 'nearest':
coord = random.choice(self.coordinates)
coord_str = f"{coord[1]:.6f},{coord[0]:.6f}"
return f"{host}/nearest/v1/driving/{coord_str}"
elif benchmark_name == 'trip':
num_coords = random.randint(2, 10)
selected_coords = random.sample(self.coordinates, num_coords)
coords_str = ";".join([f"{coord[1]:.6f},{coord[0]:.6f}" for coord in selected_coords])
return f"{host}/trip/v1/driving/{coords_str}?steps=true"
else:
raise Exception(f"Unknown benchmark: {benchmark_name}")
def calculate_confidence_interval(data):
#assert len(data) == 5, f"Shape: {data.shape}"
mean = np.mean(data)
std_err = np.std(data, ddof=1) / np.sqrt(len(data))
h = std_err * stats.t.ppf((1 + 0.95) / 2., len(data) - 1) # 95% confidence interval using t-distribution
return mean, h
def main():
parser = argparse.ArgumentParser(description='Run GPS benchmark tests.')
parser.add_argument('--host', type=str, required=True, help='Host URL')
parser.add_argument('--method', type=str, required=True, choices=['route', 'table', 'match', 'nearest', 'trip'], help='Benchmark method')
parser.add_argument('--num_requests', type=int, required=True, help='Number of requests to perform')
parser.add_argument('--iterations', type=int, required=True, help='Number of iterations to run the benchmark')
parser.add_argument('--gps_traces_file_path', type=str, required=True, help='Path to the GPS traces file')
args = parser.parse_args()
runner = BenchmarkRunner(args.gps_traces_file_path)
all_times = []
for _ in range(args.iterations):
random.seed(42)
times = runner.run(args.method, args.host, args.num_requests)
all_times.append(times)
all_times = np.asarray(all_times)
print('Shape: ', all_times.shape)
total_time, total_ci = calculate_confidence_interval(np.sum(all_times, axis=1))
min_time, min_ci = calculate_confidence_interval(np.min(all_times, axis=1))
mean_time, mean_ci = calculate_confidence_interval(np.mean(all_times, axis=1))
median_time, median_ci = calculate_confidence_interval(np.median(all_times, axis=1))
perc_95_time, perc_95_ci = calculate_confidence_interval(np.percentile(all_times, 95, axis=1))
perc_99_time, perc_99_ci = calculate_confidence_interval(np.percentile(all_times, 99, axis=1))
max_time, max_ci = calculate_confidence_interval(np.max(all_times, axis=1))
print(f'Total: {total_time:.2f}ms ± {total_ci:.2f}ms')
print(f"Min time: {min_time:.2f}ms ± {min_ci:.2f}ms")
print(f"Mean time: {mean_time:.2f}ms ± {mean_ci:.2f}ms")
print(f"Median time: {median_time:.2f}ms ± {median_ci:.2f}ms")
print(f"95th percentile: {perc_95_time:.2f}ms ± {perc_95_ci:.2f}ms")
print(f"99th percentile: {perc_99_time:.2f}ms ± {perc_99_ci:.2f}ms")
print(f"Max time: {max_time:.2f}ms ± {max_ci:.2f}ms")
if __name__ == '__main__':
main()