osrm-backend/routing_algorithms/map_matching.hpp
2015-03-03 00:48:56 +01:00

503 lines
20 KiB
C++

/*
open source routing machine
Copyright (C) Dennis Luxen, others 2010
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU AFFERO General Public License as published by
the Free Software Foundation; either version 3 of the License, or
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
or see http://www.gnu.org/licenses/agpl.txt.
*/
#ifndef MAP_MATCHING_H
#define MAP_MATCHING_H
#include "routing_base.hpp"
#include "../data_structures/coordinate_calculation.hpp"
#include "../util/simple_logger.hpp"
#include <algorithm>
#include <iomanip>
#include <numeric>
#include <fstream>
template<typename T>
T makeJSONSave(T d)
{
if (std::isnan(d) || std::numeric_limits<T>::infinity() == d) {
return std::numeric_limits<T>::max();
}
if (-std::numeric_limits<T>::infinity() == d) {
return -std::numeric_limits<T>::max();
}
return d;
}
void appendToJSONArray(JSON::Array& a) { }
template<typename T, typename... Args>
void appendToJSONArray(JSON::Array& a, T value, Args... args)
{
a.values.emplace_back(value);
appendToJSONArray(a, args...);
}
template<typename... Args>
JSON::Array makeJSONArray(Args... args)
{
JSON::Array a;
appendToJSONArray(a, args...);
return a;
}
namespace Matching
{
typedef std::vector<std::pair<PhantomNode, double>> CandidateList;
typedef std::vector<CandidateList> CandidateLists;
typedef std::pair<PhantomNodes, double> PhantomNodesWithProbability;
}
// implements a hidden markov model map matching algorithm
template <class DataFacadeT> class MapMatching final
: public BasicRoutingInterface<DataFacadeT, MapMatching<DataFacadeT>>
{
using super = BasicRoutingInterface<DataFacadeT, MapMatching<DataFacadeT>>;
using QueryHeap = SearchEngineData::QueryHeap;
SearchEngineData &engine_working_data;
// FIXME this value should be a table based on samples/meter (or samples/min)
constexpr static const double beta = 10.0;
constexpr static const double sigma_z = 4.07;
constexpr static const double log_sigma_z = std::log(sigma_z);
constexpr static const double log_2_pi = std::log(2 * M_PI);
// TODO: move to a probability util header and implement as normal distribution
constexpr double emission_probability(const double distance) const
{
return (1. / (std::sqrt(2. * M_PI) * sigma_z)) *
std::exp(-0.5 * std::pow((distance / sigma_z), 2.));
}
constexpr double transition_probability(const float d_t, const float beta) const
{
return (1. / beta) * std::exp(-d_t / beta);
}
inline double log_emission_probability(const double distance) const {
const double normed_distance = distance / sigma_z;
return -0.5 * (log_2_pi + normed_distance * normed_distance) - log_sigma_z;
}
inline double log_transition_probability(const float d_t, const float beta) const
{
return -std::log(beta) - d_t / beta;
}
// TODO: needs to be estimated from the input locations
// FIXME These values seem wrong. Higher beta for more samples/minute? Should be inverse proportional.
//constexpr static const double beta = 1.;
// samples/min and beta
// 1 0.49037673
// 2 0.82918373
// 3 1.24364564
// 4 1.67079581
// 5 2.00719298
// 6 2.42513007
// 7 2.81248831
// 8 3.15745473
// 9 3.52645392
// 10 4.09511775
// 11 4.67319795
// 21 12.55107715
// 12 5.41088180
// 13 6.47666590
// 14 6.29010734
// 15 7.80752112
// 16 8.09074504
// 17 8.08550528
// 18 9.09405065
// 19 11.09090603
// 20 11.87752824
// 21 12.55107715
// 22 15.82820829
// 23 17.69496773
// 24 18.07655652
// 25 19.63438911
// 26 25.40832185
// 27 23.76001877
// 28 28.43289797
// 29 32.21683062
// 30 34.56991141
double get_distance_difference(const FixedPointCoordinate &location1,
const FixedPointCoordinate &location2,
const PhantomNode &source_phantom,
const PhantomNode &target_phantom) const
{
// great circle distance of two locations - median/avg dist table(candidate list1/2)
const auto network_distance = get_network_distance(source_phantom, target_phantom);
const auto great_circle_distance =
coordinate_calculation::great_circle_distance(location1, location2);
if (great_circle_distance > network_distance)
{
return great_circle_distance - network_distance;
}
return network_distance - great_circle_distance;
}
double get_network_distance(const PhantomNode &source_phantom,
const PhantomNode &target_phantom) const
{
EdgeWeight upper_bound = INVALID_EDGE_WEIGHT;
NodeID middle_node = SPECIAL_NODEID;
EdgeWeight edge_offset = std::min(0, -source_phantom.GetForwardWeightPlusOffset());
edge_offset = std::min(edge_offset, -source_phantom.GetReverseWeightPlusOffset());
engine_working_data.InitializeOrClearFirstThreadLocalStorage(
super::facade->GetNumberOfNodes());
engine_working_data.InitializeOrClearSecondThreadLocalStorage(
super::facade->GetNumberOfNodes());
QueryHeap &forward_heap = *(engine_working_data.forward_heap_1);
QueryHeap &reverse_heap = *(engine_working_data.reverse_heap_1);
if (source_phantom.forward_node_id != SPECIAL_NODEID)
{
forward_heap.Insert(source_phantom.forward_node_id,
-source_phantom.GetForwardWeightPlusOffset(),
source_phantom.forward_node_id);
}
if (source_phantom.reverse_node_id != SPECIAL_NODEID)
{
forward_heap.Insert(source_phantom.reverse_node_id,
-source_phantom.GetReverseWeightPlusOffset(),
source_phantom.reverse_node_id);
}
if (target_phantom.forward_node_id != SPECIAL_NODEID)
{
reverse_heap.Insert(target_phantom.forward_node_id,
target_phantom.GetForwardWeightPlusOffset(),
target_phantom.forward_node_id);
}
if (target_phantom.reverse_node_id != SPECIAL_NODEID)
{
reverse_heap.Insert(target_phantom.reverse_node_id,
target_phantom.GetReverseWeightPlusOffset(),
target_phantom.reverse_node_id);
}
// search from s and t till new_min/(1+epsilon) > length_of_shortest_path
while (0 < (forward_heap.Size() + reverse_heap.Size()))
{
if (0 < forward_heap.Size())
{
super::RoutingStep(
forward_heap, reverse_heap, &middle_node, &upper_bound, edge_offset, true);
}
if (0 < reverse_heap.Size())
{
super::RoutingStep(
reverse_heap, forward_heap, &middle_node, &upper_bound, edge_offset, false);
}
}
double distance = std::numeric_limits<double>::max();
if (upper_bound != INVALID_EDGE_WEIGHT)
{
std::vector<NodeID> packed_leg;
super::RetrievePackedPathFromHeap(forward_heap, reverse_heap, middle_node, packed_leg);
std::vector<PathData> unpacked_path;
PhantomNodes nodes;
nodes.source_phantom = source_phantom;
nodes.target_phantom = target_phantom;
super::UnpackPath(packed_leg, nodes, unpacked_path);
FixedPointCoordinate previous_coordinate = source_phantom.location;
FixedPointCoordinate current_coordinate;
distance = 0;
for (const auto& p : unpacked_path)
{
current_coordinate = super::facade->GetCoordinateOfNode(p.node);
distance += coordinate_calculation::great_circle_distance(previous_coordinate, current_coordinate);
previous_coordinate = current_coordinate;
}
distance += coordinate_calculation::great_circle_distance(previous_coordinate, target_phantom.location);
}
return distance;
}
public:
MapMatching(DataFacadeT *facade, SearchEngineData &engine_working_data)
: super(facade), engine_working_data(engine_working_data)
{
}
// TODO optimize: a lot of copying that could probably be avoided
void expandCandidates(const Matching::CandidateLists &candidates_lists,
Matching::CandidateLists &expanded_lists,
const std::vector<bool>& uturn_indicators) const
{
// expand list of PhantomNodes to be single-directional
expanded_lists.resize(candidates_lists.size());
for (const auto i : osrm::irange(0lu, candidates_lists.size()))
{
for (const auto& candidate : candidates_lists[i])
{
// bi-directional edge, split phantom node if we don't expect a uturn
if (!uturn_indicators[i] && candidate.first.forward_node_id != SPECIAL_NODEID && candidate.first.reverse_node_id != SPECIAL_NODEID)
{
PhantomNode forward_node(candidate.first);
PhantomNode reverse_node(candidate.first);
forward_node.reverse_node_id = SPECIAL_NODEID;
reverse_node.forward_node_id = SPECIAL_NODEID;
expanded_lists[i].emplace_back(forward_node, candidate.second);
expanded_lists[i].emplace_back(reverse_node, candidate.second);
}
else
{
expanded_lists[i].push_back(candidate);
}
}
}
}
void operator()(const Matching::CandidateLists &candidates_lists,
const std::vector<FixedPointCoordinate> coordinate_list,
const std::vector<bool>& uturn_indicators,
std::vector<PhantomNode>& matched_nodes,
JSON::Object& _debug_info) const
{
BOOST_ASSERT(candidates_lists.size() == coordinate_list.size());
BOOST_ASSERT(candidates_lists.size() == uturn_indicators.size());
Matching::CandidateLists timestamp_list;
expandCandidates(candidates_lists, timestamp_list, uturn_indicators);
std::vector<bool> breakage(timestamp_list.size(), true);
BOOST_ASSERT(timestamp_list.size() > 0);
// TODO for the viterbi values we actually only need the current and last row
std::vector<std::vector<double>> viterbi;
std::vector<std::vector<std::size_t>> parents;
std::vector<std::vector<bool>> pruned;
for (const auto& l : timestamp_list)
{
viterbi.emplace_back(l.size(), -std::numeric_limits<double>::infinity());
parents.emplace_back(l.size(), 0);
pruned.emplace_back(l.size(), true);
}
JSON::Array _debug_timestamps;
JSON::Array _debug_viterbi;
JSON::Array _debug_pruned;
unsigned initial_timestamp = 0;
do
{
JSON::Array _debug_initial_viterbi;
JSON::Array _debug_initial_pruned;
for (auto s = 0u; s < viterbi[initial_timestamp].size(); ++s)
{
// this might need to be squared as pi_s is also defined as the emission
// probability in the paper.
viterbi[initial_timestamp][s] = log_emission_probability(timestamp_list[initial_timestamp][s].second);
parents[initial_timestamp][s] = s;
pruned[initial_timestamp][s] = viterbi[initial_timestamp][s] < -std::numeric_limits<double>::max();
breakage[initial_timestamp] = breakage[initial_timestamp] && pruned[initial_timestamp][s];
}
for (auto s = 0u; s < viterbi[initial_timestamp].size(); ++s)
{
_debug_initial_viterbi.values.push_back(makeJSONSave(viterbi[initial_timestamp][s]));
_debug_initial_pruned.values.push_back(static_cast<unsigned>(pruned[initial_timestamp][s]));
}
_debug_viterbi.values.push_back(_debug_initial_viterbi);
_debug_pruned.values.push_back(_debug_initial_pruned);
if (initial_timestamp > 0) {
JSON::Array _debug_transition_rows;
for (auto s = 0u; s < viterbi[initial_timestamp-1].size(); ++s) {
_debug_transition_rows.values.push_back(JSON::Array());
}
_debug_timestamps.values.push_back(_debug_transition_rows);
}
++initial_timestamp;
} while (breakage[initial_timestamp - 1]);
BOOST_ASSERT(initial_timestamp > 0 && initial_timestamp < viterbi.size());
--initial_timestamp;
BOOST_ASSERT(breakage[initial_timestamp] == false);
unsigned prev_unbroken_timestamp = initial_timestamp;
for (auto t = initial_timestamp + 1; t < timestamp_list.size(); ++t)
{
const auto& prev_viterbi = viterbi[prev_unbroken_timestamp];
const auto& prev_pruned = pruned[prev_unbroken_timestamp];
const auto& prev_unbroken_timestamps_list = timestamp_list[prev_unbroken_timestamp];
const auto& prev_coordinate = coordinate_list[prev_unbroken_timestamp];
auto& current_viterbi = viterbi[t];
auto& current_pruned = pruned[t];
auto& current_parents = parents[t];
const auto& current_timestamps_list = timestamp_list[t];
const auto& current_coordinate = coordinate_list[t];
JSON::Array _debug_transition_rows;
// compute d_t for this timestamp and the next one
for (auto s = 0u; s < prev_viterbi.size(); ++s)
{
JSON::Array _debug_row;
if (prev_pruned[s])
{
_debug_transition_rows.values.push_back(_debug_row);
continue;
}
for (auto s_prime = 0u; s_prime < current_viterbi.size(); ++s_prime)
{
// how likely is candidate s_prime at time t to be emitted?
const double emission_pr = log_emission_probability(timestamp_list[t][s_prime].second);
// get distance diff between loc1/2 and locs/s_prime
const auto d_t = get_distance_difference(prev_coordinate,
current_coordinate,
prev_unbroken_timestamps_list[s].first,
current_timestamps_list[s_prime].first);
// plug probabilities together
const double transition_pr = log_transition_probability(d_t, beta);
const double new_value = prev_viterbi[s] + emission_pr + transition_pr;
JSON::Array _debug_element = makeJSONArray(
makeJSONSave(prev_viterbi[s]),
makeJSONSave(emission_pr),
makeJSONSave(transition_pr),
get_network_distance(prev_unbroken_timestamps_list[s].first, current_timestamps_list[s_prime].first),
coordinate_calculation::great_circle_distance(prev_coordinate, current_coordinate)
);
_debug_row.values.push_back(_debug_element);
if (new_value > current_viterbi[s_prime])
{
current_viterbi[s_prime] = new_value;
current_parents[s_prime] = s;
current_pruned[s_prime] = false;
breakage[t] = false;
}
}
_debug_transition_rows.values.push_back(_debug_row);
}
_debug_timestamps.values.push_back(_debug_transition_rows);
JSON::Array _debug_viterbi_col;
JSON::Array _debug_pruned_col;
for (auto s_prime = 0u; s_prime < current_viterbi.size(); ++s_prime)
{
_debug_viterbi_col.values.push_back(makeJSONSave(current_viterbi[s_prime]));
_debug_pruned_col.values.push_back(static_cast<unsigned>(current_pruned[s_prime]));
}
_debug_viterbi.values.push_back(_debug_viterbi_col);
_debug_pruned.values.push_back(_debug_pruned_col);
if (!breakage[t])
{
prev_unbroken_timestamp = t;
}
}
_debug_info.values["transitions"] = _debug_timestamps;
_debug_info.values["viterbi"] = _debug_viterbi;
_debug_info.values["pruned"] = _debug_pruned;
_debug_info.values["beta"] = beta;
// loop through the columns, and only compare the last entry
auto max_element_iter = std::max_element(viterbi[prev_unbroken_timestamp].begin(), viterbi[prev_unbroken_timestamp].end());
auto parent_index = std::distance(viterbi[prev_unbroken_timestamp].begin(), max_element_iter);
std::deque<std::pair<std::size_t, std::size_t>> reconstructed_indices;
for (auto i = prev_unbroken_timestamp; i > initial_timestamp; --i)
{
if (breakage[i])
continue;
reconstructed_indices.emplace_front(i, parent_index);
parent_index = parents[i][parent_index];
}
reconstructed_indices.emplace_front(initial_timestamp, parent_index);
matched_nodes.resize(reconstructed_indices.size());
for (auto i = 0u; i < reconstructed_indices.size(); ++i)
{
auto timestamp_index = reconstructed_indices[i].first;
auto location_index = reconstructed_indices[i].second;
matched_nodes[i] = timestamp_list[timestamp_index][location_index].first;
}
unsigned removed = candidates_lists.size() - matched_nodes.size();
if (removed > 10)
SimpleLogger().Write(logWARNING) << "Warning: removed " << removed << " candiates.";
JSON::Array _debug_chosen_candidates;
auto _debug_candidate_iter = reconstructed_indices.begin();
for (auto i = 0u; i < timestamp_list.size(); ++i)
{
if (_debug_candidate_iter != reconstructed_indices.end() && _debug_candidate_iter->first == i)
{
_debug_chosen_candidates.values.push_back(_debug_candidate_iter->second);
_debug_candidate_iter = std::next(_debug_candidate_iter);
}
else
{
_debug_chosen_candidates.values.push_back(JSON::Null());
}
}
_debug_info.values["chosen_candidates"] = _debug_chosen_candidates;
JSON::Array _debug_breakage;
for (auto b : breakage) {
_debug_breakage.values.push_back(static_cast<unsigned>(b));
}
_debug_info.values["breakage"] = _debug_breakage;
JSON::Array _debug_expanded_candidates;
for (const auto& l : timestamp_list) {
JSON::Array _debug_expanded_candidates_col;
for (const auto& pair : l) {
const auto& coord = pair.first.location;
_debug_expanded_candidates_col.values.push_back(makeJSONArray(coord.lat / COORDINATE_PRECISION,
coord.lon / COORDINATE_PRECISION));
}
_debug_expanded_candidates.values.push_back(_debug_expanded_candidates_col);
}
_debug_info.values["expanded_candidates"] = _debug_expanded_candidates;
}
};
//[1] "Hidden Markov Map Matching Through Noise and Sparseness"; P. Newson and J. Krumm; 2009; ACM GIS
#endif /* MAP_MATCHING_H */