osrm-backend/include/util/guidance/toolkit.hpp

123 lines
4.6 KiB
C++

#ifndef OSRM_UTIL_GUIDANCE_TOOLKIT_HPP_
#define OSRM_UTIL_GUIDANCE_TOOLKIT_HPP_
/* A set of tools required for guidance in both pre and post-processing */
#include "extractor/guidance/turn_instruction.hpp"
#include "util/guidance/bearing_class.hpp"
#include "util/guidance/entry_class.hpp"
#include "util/simple_logger.hpp"
#include <algorithm>
#include <vector>
namespace osrm
{
namespace util
{
namespace guidance
{
inline double angularDeviation(const double angle, const double from)
{
const double deviation = std::abs(angle - from);
return std::min(360 - deviation, deviation);
}
inline extractor::guidance::DirectionModifier getTurnDirection(const double angle)
{
// An angle of zero is a u-turn
// 180 goes perfectly straight
// 0-180 are right turns
// 180-360 are left turns
if (angle > 0 && angle < 60)
return extractor::guidance::DirectionModifier::SharpRight;
if (angle >= 60 && angle < 140)
return extractor::guidance::DirectionModifier::Right;
if (angle >= 140 && angle < 170)
return extractor::guidance::DirectionModifier::SlightRight;
if (angle >= 165 && angle <= 195)
return extractor::guidance::DirectionModifier::Straight;
if (angle > 190 && angle <= 220)
return extractor::guidance::DirectionModifier::SlightLeft;
if (angle > 220 && angle <= 300)
return extractor::guidance::DirectionModifier::Left;
if (angle > 300 && angle < 360)
return extractor::guidance::DirectionModifier::SharpLeft;
return extractor::guidance::DirectionModifier::UTurn;
}
inline double getMatchingDiscreteBearing(const bool requires_entry,
const double bearing,
const EntryClass entry_class,
const std::vector<double> existing_bearings)
{
if (existing_bearings.empty())
return 0;
const double discrete_bearing =
BearingClass::discreteIDToAngle(BearingClass::angleToDiscreteID(bearing));
// it they are very close to the turn, the discrete bearing should be fine
if (std::abs(bearing - discrete_bearing) < 0.25 * BearingClass::discrete_angle_step_size)
{
const auto isValidEntry = [&]() {
const auto bound = std::upper_bound(existing_bearings.begin(), existing_bearings.end(),
(discrete_bearing - 0.001));
const auto index = bound == existing_bearings.end()
? 0
: std::distance(existing_bearings.begin(), bound);
return entry_class.allowsEntry(index);
};
BOOST_ASSERT(!requires_entry || isValidEntry());
return discrete_bearing;
}
else
{
// the next larger bearing or first if we are wrapping around at zero
const auto next_index =
std::distance(existing_bearings.begin(),
std::lower_bound(existing_bearings.begin(), existing_bearings.end(),
discrete_bearing)) %
existing_bearings.size();
// next smaller bearing or last if we are wrapping around at zero
const auto previous_index =
(next_index + existing_bearings.size() - 1) % existing_bearings.size();
const auto difference = [](const double first, const double second) {
return std::min(std::abs(first - second), 360.0 - std::abs(first - second));
};
const auto next_bearing = existing_bearings[next_index];
const auto previous_bearing = existing_bearings[previous_index];
const auto decideOnBearing = [&](
const std::size_t preferred_index, const double preferred_bearing,
const std::size_t alternative_index, const double alternative_bearing) {
if (!requires_entry || entry_class.allowsEntry(preferred_index))
return preferred_bearing;
else if (entry_class.allowsEntry(alternative_index))
return alternative_bearing;
else
{
SimpleLogger().Write(logDEBUG)
<< "Cannot find a valid entry for a discrete Bearing in Turn Classificiation";
return 0.;
}
};
if (difference(bearing, next_bearing) < difference(bearing, previous_index))
return decideOnBearing(next_index, next_bearing, previous_index, previous_bearing);
else
return decideOnBearing(previous_index, previous_bearing, next_index, next_bearing);
}
return 0;
}
} // namespace guidance
} // namespace util
} // namespace osrm
#endif /* OSRM_UTIL_GUIDANCE_TOOLKIT_HPP_ */