This change takes the existing typedefs for weight, duration and distance, and makes them proper types, using the existing Alias functionality. Primarily this is to prevent bugs where the metrics are switched, but it also adds additional documentation. For example, it now makes it clear (despite the naming of variables) that most of the trip algorithm is running on the duration metric. I've not made any changes to the casts performed between metrics and numeric types, they now just more explicit.
205 lines
7.4 KiB
C++
205 lines
7.4 KiB
C++
#ifndef OSRM_PARTITIONER_EDGE_BASED_GRAPH_READER_HPP
|
|
#define OSRM_PARTITIONER_EDGE_BASED_GRAPH_READER_HPP
|
|
|
|
#include "partitioner/edge_based_graph.hpp"
|
|
|
|
#include "extractor/edge_based_edge.hpp"
|
|
#include "extractor/files.hpp"
|
|
#include "storage/io.hpp"
|
|
#include "util/coordinate.hpp"
|
|
#include "util/dynamic_graph.hpp"
|
|
#include "util/typedefs.hpp"
|
|
|
|
#include <tbb/blocked_range.h>
|
|
#include <tbb/parallel_for.h>
|
|
#include <tbb/parallel_reduce.h>
|
|
|
|
#include <cstdint>
|
|
|
|
#include <algorithm>
|
|
#include <iterator>
|
|
#include <memory>
|
|
#include <vector>
|
|
|
|
namespace osrm
|
|
{
|
|
namespace partitioner
|
|
{
|
|
|
|
// Bidirectional (s,t) to (s,t) and (t,s)
|
|
inline std::vector<extractor::EdgeBasedEdge>
|
|
splitBidirectionalEdges(const std::vector<extractor::EdgeBasedEdge> &edges)
|
|
{
|
|
std::vector<extractor::EdgeBasedEdge> directed;
|
|
directed.reserve(edges.size() * 2);
|
|
|
|
for (const auto &edge : edges)
|
|
{
|
|
if (edge.data.weight == INVALID_EDGE_WEIGHT)
|
|
continue;
|
|
|
|
directed.emplace_back(edge.source,
|
|
edge.target,
|
|
edge.data.turn_id,
|
|
std::max(edge.data.weight, {1}),
|
|
to_alias<EdgeDuration>(edge.data.duration),
|
|
edge.data.distance,
|
|
edge.data.forward,
|
|
edge.data.backward);
|
|
|
|
directed.emplace_back(edge.target,
|
|
edge.source,
|
|
edge.data.turn_id,
|
|
std::max(edge.data.weight, {1}),
|
|
to_alias<EdgeDuration>(edge.data.duration),
|
|
edge.data.distance,
|
|
edge.data.backward,
|
|
edge.data.forward);
|
|
}
|
|
|
|
return directed;
|
|
}
|
|
|
|
template <typename OutputEdgeT>
|
|
std::vector<OutputEdgeT> prepareEdgesForUsageInGraph(std::vector<extractor::EdgeBasedEdge> edges)
|
|
{
|
|
// sort into blocks of edges with same source + target
|
|
// the we partition by the forward flag to sort all edges with a forward direction first.
|
|
// the we sort by weight to ensure the first forward edge is the smallest forward edge
|
|
std::sort(begin(edges), end(edges), [](const auto &lhs, const auto &rhs) {
|
|
return std::tie(lhs.source, lhs.target, rhs.data.forward, lhs.data.weight) <
|
|
std::tie(rhs.source, rhs.target, lhs.data.forward, rhs.data.weight);
|
|
});
|
|
|
|
std::vector<OutputEdgeT> output_edges;
|
|
output_edges.reserve(edges.size());
|
|
|
|
for (auto begin_interval = edges.begin(); begin_interval != edges.end();)
|
|
{
|
|
const NodeID source = begin_interval->source;
|
|
const NodeID target = begin_interval->target;
|
|
|
|
auto end_interval =
|
|
std::find_if_not(begin_interval, edges.end(), [source, target](const auto &edge) {
|
|
return std::tie(edge.source, edge.target) == std::tie(source, target);
|
|
});
|
|
BOOST_ASSERT(begin_interval != end_interval);
|
|
|
|
// remove eigenloops
|
|
if (source == target)
|
|
{
|
|
begin_interval = end_interval;
|
|
continue;
|
|
}
|
|
|
|
BOOST_ASSERT_MSG(begin_interval->data.forward != begin_interval->data.backward,
|
|
"The forward and backward flag need to be mutally exclusive");
|
|
|
|
// find smallest backward edge and check if we can merge
|
|
auto first_backward = std::find_if(
|
|
begin_interval, end_interval, [](const auto &edge) { return edge.data.backward; });
|
|
|
|
// thanks to the sorting we know this is the smallest backward edge
|
|
// and there is no forward edge
|
|
if (begin_interval == first_backward)
|
|
{
|
|
output_edges.push_back(OutputEdgeT{source, target, first_backward->data});
|
|
}
|
|
// only a forward edge, thanks to the sorting this is the smallest
|
|
else if (first_backward == end_interval)
|
|
{
|
|
output_edges.push_back(OutputEdgeT{source, target, begin_interval->data});
|
|
}
|
|
// we have both a forward and a backward edge, we need to evaluate
|
|
// if we can merge them
|
|
else
|
|
{
|
|
BOOST_ASSERT(begin_interval->data.forward);
|
|
BOOST_ASSERT(first_backward->data.backward);
|
|
BOOST_ASSERT(first_backward != end_interval);
|
|
|
|
// same weight, so we can just merge them
|
|
if (begin_interval->data.weight == first_backward->data.weight)
|
|
{
|
|
OutputEdgeT merged{source, target, begin_interval->data};
|
|
merged.data.backward = true;
|
|
output_edges.push_back(std::move(merged));
|
|
}
|
|
// we need to insert separate forward and reverse edges
|
|
else
|
|
{
|
|
output_edges.push_back(OutputEdgeT{source, target, begin_interval->data});
|
|
output_edges.push_back(OutputEdgeT{source, target, first_backward->data});
|
|
}
|
|
}
|
|
|
|
begin_interval = end_interval;
|
|
}
|
|
|
|
return output_edges;
|
|
}
|
|
|
|
inline std::vector<extractor::EdgeBasedEdge>
|
|
graphToEdges(const DynamicEdgeBasedGraph &edge_based_graph)
|
|
{
|
|
auto range = tbb::blocked_range<NodeID>(0, edge_based_graph.GetNumberOfNodes());
|
|
auto max_turn_id = tbb::parallel_reduce(
|
|
range,
|
|
NodeID{0},
|
|
[&edge_based_graph](const auto range, NodeID initial) {
|
|
NodeID max_turn_id = initial;
|
|
for (auto node = range.begin(); node < range.end(); ++node)
|
|
{
|
|
for (auto edge : edge_based_graph.GetAdjacentEdgeRange(node))
|
|
{
|
|
const auto &data = edge_based_graph.GetEdgeData(edge);
|
|
max_turn_id = std::max(max_turn_id, data.turn_id);
|
|
}
|
|
}
|
|
return max_turn_id;
|
|
},
|
|
[](const NodeID lhs, const NodeID rhs) { return std::max(lhs, rhs); });
|
|
|
|
std::vector<extractor::EdgeBasedEdge> edges(max_turn_id + 1);
|
|
tbb::parallel_for(range, [&](const auto range) {
|
|
for (auto node = range.begin(); node < range.end(); ++node)
|
|
{
|
|
for (auto edge : edge_based_graph.GetAdjacentEdgeRange(node))
|
|
{
|
|
const auto &data = edge_based_graph.GetEdgeData(edge);
|
|
// we only need to save the forward edges, since the read method will
|
|
// convert from forward to bi-directional edges again
|
|
if (data.forward)
|
|
{
|
|
auto target = edge_based_graph.GetTarget(edge);
|
|
BOOST_ASSERT(data.turn_id <= max_turn_id);
|
|
edges[data.turn_id] = extractor::EdgeBasedEdge{node, target, data};
|
|
// only save the forward edge
|
|
edges[data.turn_id].data.forward = true;
|
|
edges[data.turn_id].data.backward = false;
|
|
}
|
|
}
|
|
}
|
|
});
|
|
|
|
return edges;
|
|
}
|
|
|
|
inline DynamicEdgeBasedGraph LoadEdgeBasedGraph(const boost::filesystem::path &path)
|
|
{
|
|
EdgeID number_of_edge_based_nodes;
|
|
std::vector<extractor::EdgeBasedEdge> edges;
|
|
std::uint32_t checksum;
|
|
extractor::files::readEdgeBasedGraph(path, number_of_edge_based_nodes, edges, checksum);
|
|
|
|
auto directed = splitBidirectionalEdges(edges);
|
|
auto tidied = prepareEdgesForUsageInGraph<DynamicEdgeBasedGraphEdge>(std::move(directed));
|
|
|
|
return DynamicEdgeBasedGraph(number_of_edge_based_nodes, tidied, checksum);
|
|
}
|
|
|
|
} // namespace partitioner
|
|
} // namespace osrm
|
|
|
|
#endif
|