osrm-backend/include/util/rectangle.hpp

186 lines
6.4 KiB
C++

#ifndef OSRM_UTIL_RECTANGLE_HPP
#define OSRM_UTIL_RECTANGLE_HPP
#include "util/coordinate.hpp"
#include "util/coordinate_calculation.hpp"
#include <boost/assert.hpp>
#include <limits>
#include <utility>
#include <cstdint>
namespace osrm::util
{
struct RectangleInt2D
{
RectangleInt2D()
: min_lon{std::numeric_limits<std::int32_t>::max()},
max_lon{std::numeric_limits<std::int32_t>::min()},
min_lat{std::numeric_limits<std::int32_t>::max()},
max_lat{std::numeric_limits<std::int32_t>::min()}
{
}
RectangleInt2D(FixedLongitude min_lon_,
FixedLongitude max_lon_,
FixedLatitude min_lat_,
FixedLatitude max_lat_)
: min_lon(min_lon_), max_lon(max_lon_), min_lat(min_lat_), max_lat(max_lat_)
{
}
RectangleInt2D(FloatLongitude min_lon_,
FloatLongitude max_lon_,
FloatLatitude min_lat_,
FloatLatitude max_lat_)
: min_lon(toFixed(min_lon_)), max_lon(toFixed(max_lon_)), min_lat(toFixed(min_lat_)),
max_lat(toFixed(max_lat_))
{
}
FixedLongitude min_lon, max_lon;
FixedLatitude min_lat, max_lat;
void MergeBoundingBoxes(const RectangleInt2D &other)
{
min_lon = std::min(min_lon, other.min_lon);
max_lon = std::max(max_lon, other.max_lon);
min_lat = std::min(min_lat, other.min_lat);
max_lat = std::max(max_lat, other.max_lat);
BOOST_ASSERT(min_lon != FixedLongitude{std::numeric_limits<std::int32_t>::min()});
BOOST_ASSERT(min_lat != FixedLatitude{std::numeric_limits<std::int32_t>::min()});
BOOST_ASSERT(max_lon != FixedLongitude{std::numeric_limits<std::int32_t>::min()});
BOOST_ASSERT(max_lat != FixedLatitude{std::numeric_limits<std::int32_t>::min()});
}
Coordinate Centroid() const
{
Coordinate centroid;
// The coordinates of the midpoints are given by:
// x = (x1 + x2) /2 and y = (y1 + y2) /2.
centroid.lon = (min_lon + max_lon) / FixedLongitude{2};
centroid.lat = (min_lat + max_lat) / FixedLatitude{2};
return centroid;
}
bool Intersects(const RectangleInt2D &other) const
{
// Standard box intersection test - check if boxes *don't* overlap,
// and return the negative of that
return !(max_lon < other.min_lon || min_lon > other.max_lon || max_lat < other.min_lat ||
min_lat > other.max_lat);
}
// This code assumes that we are operating in euclidean space!
// That means if you just put unprojected lat/lon in here you will
// get invalid results.
std::uint64_t GetMinSquaredDist(const Coordinate location) const
{
const bool is_contained = Contains(location);
if (is_contained)
{
return 0.0f;
}
enum Direction
{
INVALID = 0,
NORTH = 1,
SOUTH = 2,
EAST = 4,
NORTH_EAST = 5,
SOUTH_EAST = 6,
WEST = 8,
NORTH_WEST = 9,
SOUTH_WEST = 10
};
Direction d = INVALID;
if (location.lat > max_lat)
d = (Direction)(d | NORTH);
else if (location.lat < min_lat)
d = (Direction)(d | SOUTH);
if (location.lon > max_lon)
d = (Direction)(d | EAST);
else if (location.lon < min_lon)
d = (Direction)(d | WEST);
BOOST_ASSERT(d != INVALID);
std::uint64_t min_dist = std::numeric_limits<std::uint64_t>::max();
switch (d)
{
case NORTH:
min_dist = coordinate_calculation::squaredEuclideanDistance(
location, Coordinate(location.lon, max_lat));
break;
case SOUTH:
min_dist = coordinate_calculation::squaredEuclideanDistance(
location, Coordinate(location.lon, min_lat));
break;
case WEST:
min_dist = coordinate_calculation::squaredEuclideanDistance(
location, Coordinate(min_lon, location.lat));
break;
case EAST:
min_dist = coordinate_calculation::squaredEuclideanDistance(
location, Coordinate(max_lon, location.lat));
break;
case NORTH_EAST:
min_dist = coordinate_calculation::squaredEuclideanDistance(
location, Coordinate(max_lon, max_lat));
break;
case NORTH_WEST:
min_dist = coordinate_calculation::squaredEuclideanDistance(
location, Coordinate(min_lon, max_lat));
break;
case SOUTH_EAST:
min_dist = coordinate_calculation::squaredEuclideanDistance(
location, Coordinate(max_lon, min_lat));
break;
case SOUTH_WEST:
min_dist = coordinate_calculation::squaredEuclideanDistance(
location, Coordinate(min_lon, min_lat));
break;
default:
break;
}
BOOST_ASSERT(min_dist < std::numeric_limits<std::uint64_t>::max());
return min_dist;
}
bool Contains(const Coordinate location) const
{
const bool lons_contained = (location.lon >= min_lon) && (location.lon <= max_lon);
const bool lats_contained = (location.lat >= min_lat) && (location.lat <= max_lat);
return lons_contained && lats_contained;
}
bool IsValid() const
{
return min_lon != FixedLongitude{std::numeric_limits<std::int32_t>::max()} &&
max_lon != FixedLongitude{std::numeric_limits<std::int32_t>::min()} &&
min_lat != FixedLatitude{std::numeric_limits<std::int32_t>::max()} &&
max_lat != FixedLatitude{std::numeric_limits<std::int32_t>::min()};
}
static RectangleInt2D ExpandMeters(const Coordinate &coordinate, const double meters)
{
const double lat_offset = meters / coordinate_calculation::METERS_PER_DEGREE_LAT;
const double lon_offset =
meters / coordinate_calculation::metersPerLngDegree(coordinate.lat);
return RectangleInt2D{coordinate.lon - toFixed(FloatLongitude{lon_offset}),
coordinate.lon + toFixed(FloatLongitude{lon_offset}),
coordinate.lat - toFixed(FloatLatitude{lat_offset}),
coordinate.lat + toFixed(FloatLatitude{lat_offset})};
}
};
} // namespace osrm::util
#endif