osrm-backend/include/util/cheap_ruler.hpp

88 lines
2.1 KiB
C++

#pragma once
#include <cassert>
#include <cmath>
#include <cstdint>
#include <limits>
#include <numbers>
#include <tuple>
#include <utility>
namespace mapbox
{
namespace geometry
{
template <typename T> struct point
{
using coordinate_type = T;
constexpr point() : x(), y() {}
constexpr point(T x_, T y_) : x(x_), y(y_) {}
T x;
T y;
};
} // namespace geometry
namespace cheap_ruler
{
using point = geometry::point<double>;
class CheapRuler
{
// Values that define WGS84 ellipsoid model of the Earth
static constexpr double RE = 6378.137; // equatorial radius
static constexpr double FE = 1.0 / 298.257223563; // flattening
static constexpr double E2 = FE * (2 - FE);
static constexpr double RAD = std::numbers::pi / 180.0;
public:
explicit CheapRuler(double latitude)
{
// Curvature formulas from https://en.wikipedia.org/wiki/Earth_radius#Meridional
double mul = RAD * RE * 1000;
double coslat = std::cos(latitude * RAD);
double w2 = 1 / (1 - E2 * (1 - coslat * coslat));
double w = std::sqrt(w2);
// multipliers for converting longitude and latitude degrees into distance
kx = mul * w * coslat; // based on normal radius of curvature
ky = mul * w * w2 * (1 - E2); // based on meridonal radius of curvature
}
double squareDistance(point a, point b) const
{
auto dx = longDiff(a.x, b.x) * kx;
auto dy = (a.y - b.y) * ky;
return dx * dx + dy * dy;
}
//
// Given two points of the form [x = longitude, y = latitude], returns the distance.
//
double distance(point a, point b) const { return std::sqrt(squareDistance(a, b)); }
//
// Returns the bearing between two points in angles.
//
double bearing(point a, point b) const
{
auto dx = longDiff(b.x, a.x) * kx;
auto dy = (b.y - a.y) * ky;
return std::atan2(dx, dy) / RAD;
}
private:
double ky;
double kx;
static double longDiff(double a, double b) { return std::remainder(a - b, 360); }
};
} // namespace cheap_ruler
} // namespace mapbox