osrm-backend/include/partitioner/dinic_max_flow.hpp
2022-12-20 18:00:11 +01:00

95 lines
3.7 KiB
C++
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#ifndef OSRM_PARTITIONER_DINIC_MAX_FLOW_HPP_
#define OSRM_PARTITIONER_DINIC_MAX_FLOW_HPP_
#include "partitioner/bisection_graph_view.hpp"
#include <cstdint>
#include <functional>
#include <set>
#include <unordered_set>
#include <utility>
#include <vector>
namespace osrm::partitioner
{
class DinicMaxFlow
{
public:
// maximal number of hops in the graph from source to sink
using Level = std::uint32_t;
using MinCut = struct
{
std::size_t num_nodes_source;
std::size_t num_edges;
std::vector<bool> flags;
};
// input parameter storing the set o
using SourceSinkNodes = std::unordered_set<NodeID>;
MinCut operator()(const BisectionGraphView &view,
const SourceSinkNodes &source_nodes,
const SourceSinkNodes &sink_nodes) const;
// validates the inpiut parameters to the flow algorithm (e.g. not intersecting)
bool Validate(const BisectionGraphView &view,
const SourceSinkNodes &source_nodes,
const SourceSinkNodes &sink_nodes) const;
private:
// the level of each node in the graph (==hops in BFS from source)
using LevelGraph = std::vector<Level>;
// this is actually faster than using an unordered_set<Edge>, stores all edges that have
// capacity grouped by node
using FlowEdges = std::vector<std::set<NodeID>>;
// The level graph (see [1]) is based on a BFS computation. We assign a level to all nodes
// (starting with 0 for all source nodes) and assign the hop distance in the residual graph as
// the level of the node.
// a
// / \ 
// s t
// \ /
// b
// would assign s = 0, a,b = 1, t=2
LevelGraph ComputeLevelGraph(const BisectionGraphView &view,
const std::vector<NodeID> &border_source_nodes,
const SourceSinkNodes &source_nodes,
const SourceSinkNodes &sink_nodes,
const FlowEdges &flow) const;
// Using the above levels (see ComputeLevelGraph), we can use multiple DFS (that can now be
// directed at the sink) to find a flow that completely blocks the level graph (i.e. no path
// with increasing level exists from `s` to `t`).
std::size_t BlockingFlow(FlowEdges &flow,
LevelGraph &levels,
const BisectionGraphView &view,
const SourceSinkNodes &source_nodes,
const std::vector<NodeID> &border_sink_nodes) const;
// Finds a single augmenting path from a node to the sink side following levels in the level
// graph. We don't actually remove the edges, so we have to check for increasing level values.
// Since we know which sinks have been reached, we actually search for these paths starting at
// sink nodes, instead of the source, so we can save a few dfs runs
std::vector<NodeID> GetAugmentingPath(LevelGraph &levels,
const NodeID from,
const BisectionGraphView &view,
const FlowEdges &flow,
const SourceSinkNodes &source_nodes) const;
// Builds an actual cut result from a level graph
MinCut MakeCut(const BisectionGraphView &view,
const LevelGraph &levels,
const std::size_t flow_value) const;
};
} // namespace osrm::partitioner
// Implementation of Dinics [1] algorithm for max-flow/min-cut.
// [1] https://www.cs.bgu.ac.il/~dinitz/D70.pdf
#endif // OSRM_PARTITIONER_DINIC_MAX_FLOW_HPP_