osrm-backend/include/engine/internal_route_result.hpp
2024-07-02 22:37:09 +02:00

156 lines
5.9 KiB
C++

#ifndef RAW_ROUTE_DATA_H
#define RAW_ROUTE_DATA_H
#include "extractor/class_data.hpp"
#include "extractor/travel_mode.hpp"
#include "guidance/turn_bearing.hpp"
#include "guidance/turn_instruction.hpp"
#include "engine/phantom_node.hpp"
#include "util/coordinate.hpp"
#include "util/guidance/entry_class.hpp"
#include "util/guidance/turn_lanes.hpp"
#include "util/integer_range.hpp"
#include "util/typedefs.hpp"
#include <optional>
#include <vector>
namespace osrm::engine
{
struct PathData
{
// from edge-based-node id
NodeID from_edge_based_node;
// the internal OSRM id of the OSM node id that is the via node of the turn
NodeID turn_via_node;
// weight that is traveled on the segment until the turn is reached
// including the turn weight, if one exists
EdgeWeight weight_until_turn;
// If this segment immediately precedes a turn, then duration_of_turn
// will contain the weight of the turn. Otherwise it will be 0.
EdgeWeight weight_of_turn;
// duration that is traveled on the segment until the turn is reached,
// including a turn if the segment precedes one.
EdgeDuration duration_until_turn;
// If this segment immediately precedes a turn, then duration_of_turn
// will contain the duration of the turn. Otherwise it will be 0.
EdgeDuration duration_of_turn;
// Source of the speed value on this road segment
DatasourceID datasource_id;
// If segment precedes a turn, ID of the turn itself
std::optional<EdgeID> turn_edge;
};
struct InternalRouteResult
{
std::vector<std::vector<PathData>> unpacked_path_segments;
std::vector<PhantomEndpoints> leg_endpoints;
std::vector<bool> source_traversed_in_reverse;
std::vector<bool> target_traversed_in_reverse;
EdgeWeight shortest_path_weight = INVALID_EDGE_WEIGHT;
bool is_valid() const { return INVALID_EDGE_WEIGHT != shortest_path_weight; }
bool is_via_leg(const std::size_t leg) const
{
return (leg != unpacked_path_segments.size() - 1);
}
// Note: includes duration for turns, except for at start and end node.
EdgeDuration duration() const
{
EdgeDuration ret{0};
for (const auto &leg : unpacked_path_segments)
for (const auto &segment : leg)
ret += segment.duration_until_turn;
return ret;
}
};
struct InternalManyRoutesResult
{
InternalManyRoutesResult() = default;
InternalManyRoutesResult(InternalRouteResult route) : routes{std::move(route)} {}
InternalManyRoutesResult(std::vector<InternalRouteResult> routes_) : routes{std::move(routes_)}
{
}
std::vector<InternalRouteResult> routes;
};
inline InternalRouteResult CollapseInternalRouteResult(const InternalRouteResult &leggy_result,
const std::vector<bool> &is_waypoint)
{
BOOST_ASSERT(leggy_result.is_valid());
BOOST_ASSERT(is_waypoint[0]); // first and last coords
BOOST_ASSERT(is_waypoint.back()); // should always be waypoints
// Nothing to collapse! return result as is
if (leggy_result.unpacked_path_segments.size() == 1)
return leggy_result;
BOOST_ASSERT(leggy_result.leg_endpoints.size() > 1);
InternalRouteResult collapsed;
collapsed.shortest_path_weight = leggy_result.shortest_path_weight;
for (auto i : util::irange<std::size_t>(0, leggy_result.unpacked_path_segments.size()))
{
if (is_waypoint[i])
{
// start another leg vector
collapsed.unpacked_path_segments.push_back(leggy_result.unpacked_path_segments[i]);
// save new phantom node pair
collapsed.leg_endpoints.push_back(leggy_result.leg_endpoints[i]);
// save data about phantom nodes
collapsed.source_traversed_in_reverse.push_back(
leggy_result.source_traversed_in_reverse[i]);
collapsed.target_traversed_in_reverse.push_back(
leggy_result.target_traversed_in_reverse[i]);
}
else
// no new leg, collapse the next segment into the last leg
{
BOOST_ASSERT(!collapsed.unpacked_path_segments.empty());
auto &last_segment = collapsed.unpacked_path_segments.back();
BOOST_ASSERT(!collapsed.leg_endpoints.empty());
collapsed.leg_endpoints.back().target_phantom =
leggy_result.leg_endpoints[i].target_phantom;
collapsed.target_traversed_in_reverse.back() =
leggy_result.target_traversed_in_reverse[i];
// copy path segments into current leg
if (!leggy_result.unpacked_path_segments[i].empty())
{
auto old_size = last_segment.size();
last_segment.insert(last_segment.end(),
leggy_result.unpacked_path_segments[i].begin(),
leggy_result.unpacked_path_segments[i].end());
// The first segment of the unpacked path is missing the weight of the
// source phantom. We need to add those values back so that the total
// edge weight is correct
last_segment[old_size].weight_until_turn +=
leggy_result.source_traversed_in_reverse[i]
? leggy_result.leg_endpoints[i].source_phantom.reverse_weight
: leggy_result.leg_endpoints[i].source_phantom.forward_weight;
last_segment[old_size].duration_until_turn +=
leggy_result.source_traversed_in_reverse[i]
? leggy_result.leg_endpoints[i].source_phantom.reverse_duration
: leggy_result.leg_endpoints[i].source_phantom.forward_duration;
}
}
}
BOOST_ASSERT(collapsed.leg_endpoints.size() == collapsed.unpacked_path_segments.size());
return collapsed;
}
} // namespace osrm::engine
#endif // RAW_ROUTE_DATA_H