/* Copyright (c) 2015, Project OSRM contributors All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef MATCH_HPP #define MATCH_HPP #include "engine/plugins/plugin_base.hpp" #include "engine/map_matching/bayes_classifier.hpp" #include "engine/object_encoder.hpp" #include "engine/search_engine.hpp" #include "engine/descriptors/descriptor_base.hpp" #include "engine/descriptors/json_descriptor.hpp" #include "engine/routing_algorithms/map_matching.hpp" #include "util/compute_angle.hpp" #include "util/integer_range.hpp" #include "util/json_logger.hpp" #include "util/json_util.hpp" #include "util/string_util.hpp" #include #include #include #include #include template class MapMatchingPlugin : public BasePlugin { constexpr static const unsigned max_number_of_candidates = 10; std::shared_ptr> search_engine_ptr; using ClassifierT = BayesClassifier; using TraceClassification = ClassifierT::ClassificationT; public: MapMatchingPlugin(DataFacadeT *facade, const int max_locations_map_matching) : descriptor_string("match"), facade(facade), max_locations_map_matching(max_locations_map_matching), // the values where derived from fitting a laplace distribution // to the values of manually classified traces classifier(LaplaceDistribution(0.005986, 0.016646), LaplaceDistribution(0.054385, 0.458432), 0.696774) // valid apriori probability { search_engine_ptr = std::make_shared>(facade); } virtual ~MapMatchingPlugin() {} const std::string GetDescriptor() const final override { return descriptor_string; } TraceClassification classify(const float trace_length, const float matched_length, const int removed_points) const { (void)removed_points; // unused const double distance_feature = -std::log(trace_length) + std::log(matched_length); // matched to the same point if (!std::isfinite(distance_feature)) { return std::make_pair(ClassifierT::ClassLabel::NEGATIVE, 1.0); } const auto label_with_confidence = classifier.classify(distance_feature); return label_with_confidence; } osrm::matching::CandidateLists getCandidates( const std::vector &input_coords, const std::vector>> &input_bearings, const double gps_precision, std::vector &sub_trace_lengths) { osrm::matching::CandidateLists candidates_lists; double query_radius = 10 * gps_precision; double last_distance = coordinate_calculation::haversine_distance(input_coords[0], input_coords[1]); sub_trace_lengths.resize(input_coords.size()); sub_trace_lengths[0] = 0; for (const auto current_coordinate : osrm::irange(0, input_coords.size())) { bool allow_uturn = false; if (0 < current_coordinate) { last_distance = coordinate_calculation::haversine_distance( input_coords[current_coordinate - 1], input_coords[current_coordinate]); sub_trace_lengths[current_coordinate] += sub_trace_lengths[current_coordinate - 1] + last_distance; } if (input_coords.size() - 1 > current_coordinate && 0 < current_coordinate) { double turn_angle = ComputeAngle::OfThreeFixedPointCoordinates( input_coords[current_coordinate - 1], input_coords[current_coordinate], input_coords[current_coordinate + 1]); // sharp turns indicate a possible uturn if (turn_angle <= 90.0 || turn_angle >= 270.0) { allow_uturn = true; } } // Use bearing values if supplied, otherwise fallback to 0,180 defaults auto bearing = input_bearings.size() > 0 ? input_bearings[current_coordinate].first : 0; auto range = input_bearings.size() > 0 ? (input_bearings[current_coordinate].second ? *input_bearings[current_coordinate].second : 10) : 180; auto candidates = facade->NearestPhantomNodesInRange(input_coords[current_coordinate], query_radius, bearing, range); if (candidates.size() == 0) { break; } // sort by foward id, then by reverse id and then by distance std::sort( candidates.begin(), candidates.end(), [](const PhantomNodeWithDistance &lhs, const PhantomNodeWithDistance &rhs) { return lhs.phantom_node.forward_node_id < rhs.phantom_node.forward_node_id || (lhs.phantom_node.forward_node_id == rhs.phantom_node.forward_node_id && (lhs.phantom_node.reverse_node_id < rhs.phantom_node.reverse_node_id || (lhs.phantom_node.reverse_node_id == rhs.phantom_node.reverse_node_id && lhs.distance < rhs.distance))); }); auto new_end = std::unique( candidates.begin(), candidates.end(), [](const PhantomNodeWithDistance &lhs, const PhantomNodeWithDistance &rhs) { return lhs.phantom_node.forward_node_id == rhs.phantom_node.forward_node_id && lhs.phantom_node.reverse_node_id == rhs.phantom_node.reverse_node_id; }); candidates.resize(new_end - candidates.begin()); if (!allow_uturn) { const auto compact_size = candidates.size(); for (const auto i : osrm::irange(0, compact_size)) { // Split edge if it is bidirectional and append reverse direction to end of list if (candidates[i].phantom_node.forward_node_id != SPECIAL_NODEID && candidates[i].phantom_node.reverse_node_id != SPECIAL_NODEID) { PhantomNode reverse_node(candidates[i].phantom_node); reverse_node.forward_node_id = SPECIAL_NODEID; candidates.push_back( PhantomNodeWithDistance{reverse_node, candidates[i].distance}); candidates[i].phantom_node.reverse_node_id = SPECIAL_NODEID; } } } // sort by distance to make pruning effective std::sort(candidates.begin(), candidates.end(), [](const PhantomNodeWithDistance &lhs, const PhantomNodeWithDistance &rhs) { return lhs.distance < rhs.distance; }); candidates_lists.push_back(std::move(candidates)); } return candidates_lists; } osrm::json::Object submatchingToJSON(const osrm::matching::SubMatching &sub, const RouteParameters &route_parameters, const InternalRouteResult &raw_route) { osrm::json::Object subtrace; if (route_parameters.classify) { subtrace.values["confidence"] = sub.confidence; } JSONDescriptor json_descriptor(facade); json_descriptor.SetConfig(route_parameters); subtrace.values["hint_data"] = json_descriptor.BuildHintData(raw_route); if (route_parameters.geometry || route_parameters.print_instructions) { DescriptionFactory factory; FixedPointCoordinate current_coordinate; factory.SetStartSegment(raw_route.segment_end_coordinates.front().source_phantom, raw_route.source_traversed_in_reverse.front()); for (const auto i : osrm::irange(0, raw_route.unpacked_path_segments.size())) { for (const PathData &path_data : raw_route.unpacked_path_segments[i]) { current_coordinate = facade->GetCoordinateOfNode(path_data.node); factory.AppendSegment(current_coordinate, path_data); } factory.SetEndSegment(raw_route.segment_end_coordinates[i].target_phantom, raw_route.target_traversed_in_reverse[i], raw_route.is_via_leg(i)); } factory.Run(route_parameters.zoom_level); // we need because we don't run path simplification for (auto &segment : factory.path_description) { segment.necessary = true; } if (route_parameters.geometry) { subtrace.values["geometry"] = factory.AppendGeometryString(route_parameters.compression); } if (route_parameters.print_instructions) { std::vector::Segment> temp_segments; subtrace.values["instructions"] = json_descriptor.BuildTextualDescription(factory, temp_segments); } factory.BuildRouteSummary(factory.get_entire_length(), raw_route.shortest_path_length); osrm::json::Object json_route_summary; json_route_summary.values["total_distance"] = factory.summary.distance; json_route_summary.values["total_time"] = factory.summary.duration; subtrace.values["route_summary"] = json_route_summary; } subtrace.values["indices"] = osrm::json::make_array(sub.indices); osrm::json::Array points; for (const auto &node : sub.nodes) { points.values.emplace_back( osrm::json::make_array(node.location.lat / COORDINATE_PRECISION, node.location.lon / COORDINATE_PRECISION)); } subtrace.values["matched_points"] = points; osrm::json::Array names; for (const auto &node : sub.nodes) { names.values.emplace_back(facade->get_name_for_id(node.name_id)); } subtrace.values["matched_names"] = names; return subtrace; } Status HandleRequest(const RouteParameters &route_parameters, osrm::json::Object &json_result) final override { // enforce maximum number of locations for performance reasons if (max_locations_map_matching > 0 && static_cast(route_parameters.coordinates.size()) > max_locations_map_matching) { json_result.values["status_message"] = "Too many coodindates"; return Status::Error; } // check number of parameters if (!check_all_coordinates(route_parameters.coordinates)) { json_result.values["status_message"] = "Invalid coordinates"; return Status::Error; } std::vector sub_trace_lengths; const auto &input_coords = route_parameters.coordinates; const auto &input_timestamps = route_parameters.timestamps; const auto &input_bearings = route_parameters.bearings; if (input_timestamps.size() > 0 && input_coords.size() != input_timestamps.size()) { json_result.values["status_message"] = "Number of timestamps does not match number of coordinates"; return Status::Error; } if (input_bearings.size() > 0 && input_coords.size() != input_bearings.size()) { json_result.values["status_message"] = "Number of bearings does not match number of coordinates"; return Status::Error; } // enforce maximum number of locations for performance reasons if (static_cast(input_coords.size()) < 2) { json_result.values["status_message"] = "At least two coordinates needed"; return Status::Error; } const auto candidates_lists = getCandidates( input_coords, input_bearings, route_parameters.gps_precision, sub_trace_lengths); if (candidates_lists.size() != input_coords.size()) { BOOST_ASSERT(candidates_lists.size() < input_coords.size()); json_result.values["status_message"] = std::string("Could not find a matching segment for coordinate ") + std::to_string(candidates_lists.size()); return Status::NoSegment; } // setup logging if enabled if (osrm::json::Logger::get()) osrm::json::Logger::get()->initialize("matching"); // call the actual map matching osrm::matching::SubMatchingList sub_matchings; search_engine_ptr->map_matching(candidates_lists, input_coords, input_timestamps, route_parameters.matching_beta, route_parameters.gps_precision, sub_matchings); osrm::json::Array matchings; for (auto &sub : sub_matchings) { // classify result if (route_parameters.classify) { double trace_length = sub_trace_lengths[sub.indices.back()] - sub_trace_lengths[sub.indices.front()]; TraceClassification classification = classify(trace_length, sub.length, (sub.indices.back() - sub.indices.front() + 1) - sub.nodes.size()); if (classification.first == ClassifierT::ClassLabel::POSITIVE) { sub.confidence = classification.second; } else { sub.confidence = 1 - classification.second; } } BOOST_ASSERT(sub.nodes.size() > 1); // FIXME we only run this to obtain the geometry // The clean way would be to get this directly from the map matching plugin InternalRouteResult raw_route; PhantomNodes current_phantom_node_pair; for (unsigned i = 0; i < sub.nodes.size() - 1; ++i) { current_phantom_node_pair.source_phantom = sub.nodes[i]; current_phantom_node_pair.target_phantom = sub.nodes[i + 1]; BOOST_ASSERT(current_phantom_node_pair.source_phantom.is_valid()); BOOST_ASSERT(current_phantom_node_pair.target_phantom.is_valid()); raw_route.segment_end_coordinates.emplace_back(current_phantom_node_pair); } search_engine_ptr->shortest_path( raw_route.segment_end_coordinates, std::vector(raw_route.segment_end_coordinates.size() + 1, true), raw_route); BOOST_ASSERT(raw_route.shortest_path_length != INVALID_EDGE_WEIGHT); matchings.values.emplace_back(submatchingToJSON(sub, route_parameters, raw_route)); } if (osrm::json::Logger::get()) osrm::json::Logger::get()->render("matching", json_result); json_result.values["matchings"] = matchings; if (sub_matchings.empty()) { json_result.values["status_message"] = "Cannot find matchings"; return Status::EmptyResult; } json_result.values["status_message"] = "Found matchings"; return Status::Ok; } private: std::string descriptor_string; DataFacadeT *facade; int max_locations_map_matching; ClassifierT classifier; }; #endif // MATCH_HPP