#include "extractor/guidance/intersection_normalizer.hpp" #include "util/bearing.hpp" #include "util/coordinate_calculation.hpp" #include "util/guidance/name_announcements.hpp" #include #include using osrm::util::angularDeviation; namespace osrm { namespace extractor { namespace guidance { IntersectionNormalizer::IntersectionNormalizer( const util::NodeBasedDynamicGraph &node_based_graph, const std::vector &node_coordinates, const util::NameTable &name_table, const SuffixTable &street_name_suffix_table, const IntersectionGenerator &intersection_generator) : node_based_graph(node_based_graph), node_coordinates(node_coordinates), name_table(name_table), street_name_suffix_table(street_name_suffix_table), intersection_generator(intersection_generator) { } std::pair>> IntersectionNormalizer:: operator()(const NodeID node_at_intersection, IntersectionShape intersection) const { auto merged_shape_and_merges = MergeSegregatedRoads(node_at_intersection, std::move(intersection)); merged_shape_and_merges.first = AdjustBearingsForMergeAtDestination( node_at_intersection, std::move(merged_shape_and_merges.first)); return merged_shape_and_merges; } bool IntersectionNormalizer::CanMerge(const NodeID intersection_node, const IntersectionShape &intersection, std::size_t first_index, std::size_t second_index) const { BOOST_ASSERT(((first_index + 1) % intersection.size()) == second_index); // call wrapper to capture intersection_node and intersection const auto mergable = [this, intersection_node, &intersection](const std::size_t left_index, const std::size_t right_index) { return InnerCanMerge(intersection_node, intersection, left_index, right_index); }; /* * Merging should never depend on order/never merge more than two roads. To ensure that we don't * merge anything that is impacted by neighboring roads (e.g. three roads of the same name as in * parking lots/border checkpoints), we check if the neigboring roads would be merged as well. * In that case, we cannot merge, since we would end up merging multiple items together */ if (mergable(first_index, second_index)) { const auto is_distinct_merge = !mergable(second_index, (second_index + 1) % intersection.size()) && !mergable((first_index + intersection.size() - 1) % intersection.size(), first_index) && !mergable(second_index, (first_index + intersection.size() - 1) % intersection.size()) && !mergable(first_index, (second_index + 1) % intersection.size()); return is_distinct_merge; } else return false; } // Checks for mergability of two ways that represent the same intersection. For further // information see interface documentation in header. bool IntersectionNormalizer::InnerCanMerge(const NodeID node_at_intersection, const IntersectionShape &intersection, std::size_t first_index, std::size_t second_index) const { const auto &first_data = node_based_graph.GetEdgeData(intersection[first_index].eid); const auto &second_data = node_based_graph.GetEdgeData(intersection[second_index].eid); // only merge named ids if (first_data.name_id == EMPTY_NAMEID || second_data.name_id == EMPTY_NAMEID) return false; // need to be same name if (util::guidance::requiresNameAnnounced( first_data.name_id, second_data.name_id, name_table, street_name_suffix_table)) return false; // needs to be symmetrical for names if (util::guidance::requiresNameAnnounced( second_data.name_id, first_data.name_id, name_table, street_name_suffix_table)) return false; // compatibility is required if (first_data.travel_mode != second_data.travel_mode) return false; if (first_data.road_classification != second_data.road_classification) return false; // may not be on a roundabout if (first_data.roundabout || second_data.roundabout || first_data.circular || second_data.circular) return false; // exactly one of them has to be reversed if (first_data.reversed == second_data.reversed) return false; // mergeable if the angle is not too big const auto angle_between = angularDeviation(intersection[first_index].bearing, intersection[second_index].bearing); const auto coordinate_at_intersection = node_coordinates[node_at_intersection]; if (angle_between >= 120) return false; const auto isValidYArm = [this, intersection, coordinate_at_intersection, node_at_intersection]( const std::size_t index, const std::size_t other_index) { const auto GetActualTarget = [&](const std::size_t index) { EdgeID edge_id; std::tie(std::ignore, edge_id) = intersection_generator.SkipDegreeTwoNodes( node_at_intersection, intersection[index].eid); return node_based_graph.GetTarget(edge_id); }; const auto target_id = GetActualTarget(index); const auto other_target_id = GetActualTarget(other_index); if (target_id == node_at_intersection || other_target_id == node_at_intersection) return false; const auto coordinate_at_target = node_coordinates[target_id]; const auto coordinate_at_other_target = node_coordinates[other_target_id]; const auto turn_bearing = util::coordinate_calculation::bearing(coordinate_at_intersection, coordinate_at_target); const auto other_turn_bearing = util::coordinate_calculation::bearing( coordinate_at_intersection, coordinate_at_other_target); // fuzzy becomes narrower due to minor differences in angle computations, yay floating point const bool becomes_narrower = angularDeviation(turn_bearing, other_turn_bearing) < NARROW_TURN_ANGLE && angularDeviation(turn_bearing, other_turn_bearing) <= angularDeviation(intersection[index].bearing, intersection[other_index].bearing) + MAXIMAL_ALLOWED_NO_TURN_DEVIATION; return becomes_narrower; }; const bool is_y_arm_first = isValidYArm(first_index, second_index); const bool is_y_arm_second = isValidYArm(second_index, first_index); // Only merge valid y-arms if (!is_y_arm_first || !is_y_arm_second) return false; if (angle_between < 60) return true; // Finally, we also allow merging if all streets offer the same name, it is only three roads and // the angle is not fully extreme: if (intersection.size() != 3) return false; // since we have an intersection of size three now, there is only one index we are not looking // at right now. The final index in the intersection is calculated next: const std::size_t third_index = [first_index, second_index]() { if (first_index == 0) return second_index == 2 ? 1 : 2; else if (first_index == 1) return second_index == 2 ? 0 : 2; else return second_index == 1 ? 0 : 1; }(); // needs to be same road coming in const auto &third_data = node_based_graph.GetEdgeData(intersection[third_index].eid); if (third_data.name_id != EMPTY_NAMEID && util::guidance::requiresNameAnnounced( third_data.name_id, first_data.name_id, name_table, street_name_suffix_table)) return false; // we only allow collapsing of a Y like fork. So the angle to the third index has to be // roughly equal: const auto y_angle_difference = angularDeviation( angularDeviation(intersection[third_index].bearing, intersection[first_index].bearing), angularDeviation(intersection[third_index].bearing, intersection[second_index].bearing)); // Allow larger angles if its three roads only of the same name // This is a heuristic and might need to be revised. const bool assume_y_intersection = angle_between < 100 && y_angle_difference < FUZZY_ANGLE_DIFFERENCE; return assume_y_intersection; } /* * Segregated Roads often merge onto a single intersection. * While technically representing different roads, they are * often looked at as a single road. * Due to the merging, turn Angles seem off, wenn we compute them from the * initial positions. * * bb>b>b(2)>b>b>b * * Would be seen as a slight turn going fro a to (2). A Sharp turn going from * (1) to (2). * * In cases like these, we megre this segregated roads into a single road to * end up with a case like: * * aaaaa-bbbbbb * * for the turn representation. * Anything containing the first u-turn in a merge affects all other angles * and is handled separately from all others. */ std::pair>> IntersectionNormalizer::MergeSegregatedRoads(const NodeID intersection_node, IntersectionShape intersection) const { const auto getRight = [&](std::size_t index) { return (index + intersection.size() - 1) % intersection.size(); }; // we only merge small angles. If the difference between both is large, we are looking at a // bearing leading north. Such a bearing cannot be handled via the basic average. In this // case we actually need to shift the bearing by half the difference. const auto aroundZero = [](const double first, const double second) { return (std::max(first, second) - std::min(first, second)) >= 180; }; // find the angle between two other angles const auto combineAngles = [aroundZero](const double first, const double second) { if (!aroundZero(first, second)) return .5 * (first + second); else { const auto offset = angularDeviation(first, second); auto new_angle = std::max(first, second) + .5 * offset; if (new_angle >= 360) return new_angle - 360; return new_angle; } }; // This map stores for all edges that participated in a merging operation in which edge id they // end up in the end. We only store what we have merged into other edges. std::vector> merging_map; const auto merge = [this, combineAngles, &merging_map](const IntersectionShapeData &first, const IntersectionShapeData &second) { IntersectionShapeData result = !node_based_graph.GetEdgeData(first.eid).reversed ? first : second; result.bearing = combineAngles(first.bearing, second.bearing); BOOST_ASSERT(0 <= result.bearing && result.bearing < 360.0); // the other ID const auto merged_from = result.eid == first.eid ? second.eid : first.eid; BOOST_ASSERT( std::find_if(merging_map.begin(), merging_map.end(), [merged_from](const auto pair) { return pair.first == merged_from; }) == merging_map.end()); merging_map.push_back(std::make_pair(merged_from, result.eid)); return result; }; if (intersection.size() <= 1) return std::make_pair(intersection, merging_map); // check for merges including the basic u-turn // these result in an adjustment of all other angles. This is due to how these angles are // perceived. Considering the following example: // // c b // Y // a // // coming from a to b (given a road that splits at the fork into two one-ways), the turn is not // considered as a turn but rather as going straight. // Now if we look at the situation merging: // // a b // \ / // e - + - d // | // c // // With a,b representing the same road, the intersection itself represents a classif for way // intersection so we handle it like // // (a),b // | // e - + - d // | // c // // To be able to consider this adjusted representation down the line, we merge some roads. // If the merge occurs at the u-turn edge, we need to adjust all angles, though, since they are // with respect to the now changed perceived location of a. If we move (a) to the left, we add // the difference to all angles. Otherwise we subtract it. bool merged_first = false; // these result in an adjustment of all other angles if (CanMerge(intersection_node, intersection, intersection.size() - 1, 0)) { merged_first = true; // moving `a` to the left intersection[0] = merge(intersection.front(), intersection.back()); // FIXME if we have a left-sided country, we need to switch this off and enable it // below intersection.pop_back(); } else if (CanMerge(intersection_node, intersection, 0, 1)) { merged_first = true; intersection[0] = merge(intersection.front(), intersection[1]); intersection.erase(intersection.begin() + 1); } // a merge including the first u-turn requires an adjustment of the turn angles // therefore these are handled prior to this step for (std::size_t index = 2; index < intersection.size(); ++index) { if (CanMerge(intersection_node, intersection, getRight(index), index)) { intersection[getRight(index)] = merge(intersection[getRight(index)], intersection[index]); intersection.erase(intersection.begin() + index); --index; } } return std::make_pair(intersection, merging_map); } // OSM can have some very steep angles for joining roads. Considering the following intersection: // x // | // v __________c // / // a ---d // \ __________b // // with c->d as a oneway // and d->b as a oneway, the turn von x->d is actually a turn from x->a. So when looking at the // intersection coming from x, we want to interpret the situation as // x // | // a __ d __ v__________c // | // |_______________b // // Where we see the turn to `d` as a right turn, rather than going straight. // We do this by adjusting the local turn angle at `x` to turn onto `d` to be reflective of this // situation, where `v` would be the node at the intersection. IntersectionShape IntersectionNormalizer::AdjustBearingsForMergeAtDestination(const NodeID node_at_intersection, IntersectionShape intersection) const { // nothing to do for dead ends if (intersection.size() <= 1) return intersection; // we don't adjust any road that is longer than 30 meters (between centers of intersections), // since the road is probably too long otherwise to impact perception. const double constexpr PRUNING_DISTANCE = 30; // never adjust u-turns for (std::size_t index = 0; index < intersection.size(); ++index) { auto &road = intersection[index]; // only consider roads that are close if (road.segment_length > PRUNING_DISTANCE) continue; // to find out about the above situation, we need to look at the next intersection (at d in // the example). If the initial road can be merged to the left/right, we are about to adjust // the angle. const auto next_intersection_along_road = intersection_generator.ComputeIntersectionShape( node_based_graph.GetTarget(road.eid), node_at_intersection); if (next_intersection_along_road.size() <= 1) continue; const auto node_at_next_intersection = node_based_graph.GetTarget(road.eid); const auto adjustAngle = [](double angle, double offset) { angle += offset; if (angle > 360) return angle - 360.; else if (angle < 0) return angle + 360.; return angle; }; const auto range = node_based_graph.GetAdjacentEdgeRange(node_at_next_intersection); if (range.size() <= 1) continue; // the order does not matter const auto get_offset = [](const IntersectionShapeData &lhs, const IntersectionShapeData &rhs) { return 0.5 * angularDeviation(lhs.bearing, rhs.bearing); }; // When offsetting angles in our turns, we don't want to get past the next turn. This // function simply limits an offset to be at most half the distance to the next turn in the // offfset direction const auto get_corrected_offset = []( const double offset, const IntersectionShapeData &road, const IntersectionShapeData &next_road_in_offset_direction) { const auto offset_limit = angularDeviation(road.bearing, next_road_in_offset_direction.bearing); // limit the offset with an additional buffer return (offset + MAXIMAL_ALLOWED_NO_TURN_DEVIATION > offset_limit) ? 0.5 * offset_limit : offset; }; // check if the u-turn edge at the next intersection could be merged to the left/right. If // this is the case and the road is not far away (see previous distance check), if // influences the perceived angle. if (CanMerge(node_at_next_intersection, next_intersection_along_road, 0, 1)) { const auto offset = get_offset(next_intersection_along_road[0], next_intersection_along_road[1]); const auto corrected_offset = get_corrected_offset( offset, road, intersection[(intersection.size() + index - 1) % intersection.size()]); // at the target intersection, we merge to the right, so we need to shift the current // angle to the left road.bearing = adjustAngle(road.bearing, -corrected_offset); } else if (CanMerge(node_at_next_intersection, next_intersection_along_road, next_intersection_along_road.size() - 1, 0)) { const auto offset = get_offset(next_intersection_along_road[0], next_intersection_along_road[next_intersection_along_road.size() - 1]); const auto corrected_offset = get_corrected_offset(offset, road, intersection[(index + 1) % intersection.size()]); // at the target intersection, we merge to the left, so we need to shift the current // angle to the right road.bearing = adjustAngle(road.bearing, corrected_offset); } } return intersection; } } // namespace guidance } // namespace extractor } // namespace osrm