#include "storage/storage.hpp" #include "contractor/query_edge.hpp" #include "extractor/compressed_edge_container.hpp" #include "extractor/guidance/turn_instruction.hpp" #include "extractor/original_edge_data.hpp" #include "extractor/profile_properties.hpp" #include "extractor/query_node.hpp" #include "extractor/travel_mode.hpp" #include "storage/io.hpp" #include "storage/shared_barriers.hpp" #include "storage/shared_datatype.hpp" #include "storage/shared_memory.hpp" #include "engine/datafacade/datafacade_base.hpp" #include "util/coordinate.hpp" #include "util/exception.hpp" #include "util/fingerprint.hpp" #include "util/io.hpp" #include "util/packed_vector.hpp" #include "util/range_table.hpp" #include "util/shared_memory_vector_wrapper.hpp" #include "util/simple_logger.hpp" #include "util/static_graph.hpp" #include "util/static_rtree.hpp" #include "util/typedefs.hpp" #ifdef __linux__ #include #endif #include #include #include #include #include #include #include #include #include #include #include #include namespace osrm { namespace storage { using RTreeLeaf = engine::datafacade::BaseDataFacade::RTreeLeaf; using RTreeNode = util::StaticRTree::vector, true>::TreeNode; using QueryGraph = util::StaticGraph; Storage::Storage(StorageConfig config_) : config(std::move(config_)) {} struct RegionsLayout { SharedDataType current_layout_region; SharedDataType current_data_region; boost::interprocess::named_sharable_mutex ¤t_regions_mutex; SharedDataType old_layout_region; SharedDataType old_data_region; boost::interprocess::named_sharable_mutex &old_regions_mutex; }; RegionsLayout getRegionsLayout(SharedBarriers &barriers) { if (SharedMemory::RegionExists(CURRENT_REGIONS)) { auto shared_regions = makeSharedMemory(CURRENT_REGIONS); const auto shared_timestamp = static_cast(shared_regions->Ptr()); if (shared_timestamp->data == DATA_1) { BOOST_ASSERT(shared_timestamp->layout == LAYOUT_1); return RegionsLayout{LAYOUT_1, DATA_1, barriers.regions_1_mutex, LAYOUT_2, DATA_2, barriers.regions_2_mutex}; } BOOST_ASSERT(shared_timestamp->data == DATA_2); BOOST_ASSERT(shared_timestamp->layout == LAYOUT_2); } return RegionsLayout{ LAYOUT_2, DATA_2, barriers.regions_2_mutex, LAYOUT_1, DATA_1, barriers.regions_1_mutex}; } Storage::ReturnCode Storage::Run(int max_wait) { BOOST_ASSERT_MSG(config.IsValid(), "Invalid storage config"); util::LogPolicy::GetInstance().Unmute(); SharedBarriers barriers; boost::interprocess::upgradable_lock current_regions_lock(barriers.current_regions_mutex, boost::interprocess::defer_lock); try { if (!current_regions_lock.try_lock()) { util::SimpleLogger().Write(logWARNING) << "A data update is in progress"; return ReturnCode::Error; } } // hard unlock in case of any exception. catch (boost::interprocess::lock_exception &ex) { barriers.current_regions_mutex.unlock_upgradable(); // make sure we exit here because this is bad throw; } #ifdef __linux__ // try to disable swapping on Linux const bool lock_flags = MCL_CURRENT | MCL_FUTURE; if (-1 == mlockall(lock_flags)) { util::SimpleLogger().Write(logWARNING) << "Could not request RAM lock"; } #endif auto regions_layout = getRegionsLayout(barriers); const SharedDataType layout_region = regions_layout.old_layout_region; const SharedDataType data_region = regions_layout.old_data_region; if (max_wait > 0) { util::SimpleLogger().Write() << "Waiting for " << max_wait << " second for all queries on the old dataset to finish:"; } else { util::SimpleLogger().Write() << "Waiting for all queries on the old dataset to finish:"; } boost::interprocess::scoped_lock regions_lock( regions_layout.old_regions_mutex, boost::interprocess::defer_lock); if (max_wait > 0) { if (!regions_lock.timed_lock(boost::posix_time::microsec_clock::universal_time() + boost::posix_time::seconds(max_wait))) { util::SimpleLogger().Write(logWARNING) << "Queries did not finish in " << max_wait << " seconds. Claiming the lock by force."; // WARNING: if queries are still using the old dataset they might crash if (regions_layout.old_layout_region == LAYOUT_1) { BOOST_ASSERT(regions_layout.old_data_region == DATA_1); barriers.resetRegions1(); } else { BOOST_ASSERT(regions_layout.old_layout_region == LAYOUT_2); BOOST_ASSERT(regions_layout.old_data_region == DATA_2); barriers.resetRegions2(); } return ReturnCode::Retry; } } else { regions_lock.lock(); } util::SimpleLogger().Write() << "Ok."; // since we can't change the size of a shared memory regions we delete and reallocate if (SharedMemory::RegionExists(layout_region) && !SharedMemory::Remove(layout_region)) { throw util::exception("Could not remove " + regionToString(layout_region)); } if (SharedMemory::RegionExists(data_region) && !SharedMemory::Remove(data_region)) { throw util::exception("Could not remove " + regionToString(data_region)); } // Allocate a memory layout in shared memory auto layout_memory = makeSharedMemory(layout_region, sizeof(DataLayout), true); auto shared_layout_ptr = new (layout_memory->Ptr()) DataLayout(); LoadLayout(shared_layout_ptr); // allocate shared memory block util::SimpleLogger().Write() << "allocating shared memory of " << shared_layout_ptr->GetSizeOfLayout() << " bytes"; auto shared_memory = makeSharedMemory(data_region, shared_layout_ptr->GetSizeOfLayout(), true); char *shared_memory_ptr = static_cast(shared_memory->Ptr()); LoadData(shared_layout_ptr, shared_memory_ptr); auto data_type_memory = makeSharedMemory(CURRENT_REGIONS, sizeof(SharedDataTimestamp), true); SharedDataTimestamp *data_timestamp_ptr = static_cast(data_type_memory->Ptr()); { boost::interprocess::scoped_lock current_regions_exclusive_lock; if (max_wait > 0) { util::SimpleLogger().Write() << "Waiting for " << max_wait << " seconds to write new dataset timestamp"; auto end_time = boost::posix_time::microsec_clock::universal_time() + boost::posix_time::seconds(max_wait); current_regions_exclusive_lock = boost::interprocess::scoped_lock( std::move(current_regions_lock), end_time); if (!current_regions_exclusive_lock.owns()) { util::SimpleLogger().Write(logWARNING) << "Aquiring the lock timed out after " << max_wait << " seconds. Claiming the lock by force."; current_regions_lock.unlock(); current_regions_lock.release(); storage::SharedBarriers::resetCurrentRegions(); return ReturnCode::Retry; } } else { util::SimpleLogger().Write() << "Waiting to write new dataset timestamp"; current_regions_exclusive_lock = boost::interprocess::scoped_lock( std::move(current_regions_lock)); } util::SimpleLogger().Write() << "Ok."; data_timestamp_ptr->layout = layout_region; data_timestamp_ptr->data = data_region; data_timestamp_ptr->timestamp += 1; } util::SimpleLogger().Write() << "All data loaded."; return ReturnCode::Ok; } /** * This function examines all our data files and figures out how much * memory needs to be allocated, and the position of each data structure * in that big block. It updates the fields in the DataLayout parameter. */ void Storage::LoadLayout(DataLayout *layout_ptr) { { auto absolute_file_index_path = boost::filesystem::absolute(config.file_index_path); layout_ptr->SetBlockSize(DataLayout::FILE_INDEX_PATH, absolute_file_index_path.string().length() + 1); } { // collect number of elements to store in shared memory object util::SimpleLogger().Write() << "load names from: " << config.names_data_path; // number of entries in name index io::File name_file(config.names_data_path); const auto name_blocks = name_file.readElementCount32(); layout_ptr->SetBlockSize(DataLayout::NAME_OFFSETS, name_blocks); layout_ptr->SetBlockSize::BlockT>( DataLayout::NAME_BLOCKS, name_blocks); BOOST_ASSERT_MSG(0 != name_blocks, "name file broken"); const auto number_of_chars = name_file.readElementCount32(); layout_ptr->SetBlockSize(DataLayout::NAME_CHAR_LIST, number_of_chars); } { std::vector lane_description_offsets; std::vector lane_description_masks; if (!util::deserializeAdjacencyArray(config.turn_lane_description_path.string(), lane_description_offsets, lane_description_masks)) throw util::exception("Failed to read lane descriptions from: " + config.turn_lane_description_path.string()); layout_ptr->SetBlockSize(DataLayout::LANE_DESCRIPTION_OFFSETS, lane_description_offsets.size()); layout_ptr->SetBlockSize( DataLayout::LANE_DESCRIPTION_MASKS, lane_description_masks.size()); } // Loading information for original edges { io::File edges_file(config.edges_data_path); const auto number_of_original_edges = edges_file.readElementCount64(); // note: settings this all to the same size is correct, we extract them from the same struct layout_ptr->SetBlockSize(DataLayout::VIA_NODE_LIST, number_of_original_edges); layout_ptr->SetBlockSize(DataLayout::NAME_ID_LIST, number_of_original_edges); layout_ptr->SetBlockSize(DataLayout::TRAVEL_MODE, number_of_original_edges); layout_ptr->SetBlockSize(DataLayout::PRE_TURN_BEARING, number_of_original_edges); layout_ptr->SetBlockSize(DataLayout::POST_TURN_BEARING, number_of_original_edges); layout_ptr->SetBlockSize(DataLayout::TURN_INSTRUCTION, number_of_original_edges); layout_ptr->SetBlockSize(DataLayout::LANE_DATA_ID, number_of_original_edges); layout_ptr->SetBlockSize(DataLayout::ENTRY_CLASSID, number_of_original_edges); } { io::File hsgr_file(config.hsgr_data_path); const auto hsgr_header = io::readHSGRHeader(hsgr_file); layout_ptr->SetBlockSize(DataLayout::HSGR_CHECKSUM, 1); layout_ptr->SetBlockSize(DataLayout::GRAPH_NODE_LIST, hsgr_header.number_of_nodes); layout_ptr->SetBlockSize(DataLayout::GRAPH_EDGE_LIST, hsgr_header.number_of_edges); } // load rsearch tree size { io::File tree_node_file(config.ram_index_path); const auto tree_size = tree_node_file.readElementCount64(); layout_ptr->SetBlockSize(DataLayout::R_SEARCH_TREE, tree_size); } { // allocate space in shared memory for profile properties const auto properties_size = io::readPropertiesCount(); layout_ptr->SetBlockSize(DataLayout::PROPERTIES, properties_size); } // read timestampsize { io::File timestamp_file(config.timestamp_path); const auto timestamp_size = timestamp_file.size(); layout_ptr->SetBlockSize(DataLayout::TIMESTAMP, timestamp_size); } // load core marker size { io::File core_marker_file(config.core_data_path); const auto number_of_core_markers = core_marker_file.readElementCount32(); layout_ptr->SetBlockSize(DataLayout::CORE_MARKER, number_of_core_markers); } // load coordinate size { io::File node_file(config.nodes_data_path); const auto coordinate_list_size = node_file.readElementCount64(); layout_ptr->SetBlockSize(DataLayout::COORDINATE_LIST, coordinate_list_size); // we'll read a list of OSM node IDs from the same data, so set the block size for the same // number of items: layout_ptr->SetBlockSize( DataLayout::OSM_NODE_ID_LIST, util::PackedVector::elements_to_blocks(coordinate_list_size)); } // load geometries sizes { io::File geometry_file(config.geometries_path); const auto number_of_geometries_indices = geometry_file.readElementCount32(); layout_ptr->SetBlockSize(DataLayout::GEOMETRIES_INDEX, number_of_geometries_indices); geometry_file.skip(number_of_geometries_indices); const auto number_of_compressed_geometries = geometry_file.readElementCount32(); layout_ptr->SetBlockSize(DataLayout::GEOMETRIES_NODE_LIST, number_of_compressed_geometries); layout_ptr->SetBlockSize(DataLayout::GEOMETRIES_FWD_WEIGHT_LIST, number_of_compressed_geometries); layout_ptr->SetBlockSize(DataLayout::GEOMETRIES_REV_WEIGHT_LIST, number_of_compressed_geometries); } // load datasource sizes. This file is optional, and it's non-fatal if it doesn't // exist. { io::File geometry_datasource_file(config.datasource_indexes_path); const auto number_of_compressed_datasources = geometry_datasource_file.readElementCount64(); layout_ptr->SetBlockSize(DataLayout::DATASOURCES_LIST, number_of_compressed_datasources); } // Load datasource name sizes. This file is optional, and it's non-fatal if it doesn't // exist { io::File datasource_names_file(config.datasource_names_path); const io::DatasourceNamesData datasource_names_data = io::readDatasourceNames(datasource_names_file); layout_ptr->SetBlockSize(DataLayout::DATASOURCE_NAME_DATA, datasource_names_data.names.size()); layout_ptr->SetBlockSize(DataLayout::DATASOURCE_NAME_OFFSETS, datasource_names_data.offsets.size()); layout_ptr->SetBlockSize(DataLayout::DATASOURCE_NAME_LENGTHS, datasource_names_data.lengths.size()); } { io::File intersection_file(config.intersection_class_path, true); std::vector bearing_class_id_table; intersection_file.deserializeVector(bearing_class_id_table); layout_ptr->SetBlockSize(DataLayout::BEARING_CLASSID, bearing_class_id_table.size()); const auto bearing_blocks = intersection_file.readElementCount32(); intersection_file.skip(1); // sum_lengths layout_ptr->SetBlockSize(DataLayout::BEARING_OFFSETS, bearing_blocks); layout_ptr->SetBlockSize::BlockT>( DataLayout::BEARING_BLOCKS, bearing_blocks); // No need to read the data intersection_file.skip(bearing_blocks); intersection_file.skip::BlockT>(bearing_blocks); const auto num_bearings = intersection_file.readElementCount64(); // Skip over the actual data intersection_file.skip(num_bearings); layout_ptr->SetBlockSize(DataLayout::BEARING_VALUES, num_bearings); std::vector entry_class_table; intersection_file.deserializeVector(entry_class_table); layout_ptr->SetBlockSize(DataLayout::ENTRY_CLASS, entry_class_table.size()); } { // Loading turn lane data io::File lane_data_file(config.turn_lane_data_path); const auto lane_tuple_count = lane_data_file.readElementCount64(); layout_ptr->SetBlockSize(DataLayout::TURN_LANE_DATA, lane_tuple_count); } } void Storage::LoadData(DataLayout *layout_ptr, char *memory_ptr) { // read actual data into shared memory object // // Load the HSGR file { io::File hsgr_file(config.hsgr_data_path); auto hsgr_header = io::readHSGRHeader(hsgr_file); unsigned *checksum_ptr = layout_ptr->GetBlockPtr(memory_ptr, DataLayout::HSGR_CHECKSUM); *checksum_ptr = hsgr_header.checksum; // load the nodes of the search graph QueryGraph::NodeArrayEntry *graph_node_list_ptr = layout_ptr->GetBlockPtr(memory_ptr, DataLayout::GRAPH_NODE_LIST); // load the edges of the search graph QueryGraph::EdgeArrayEntry *graph_edge_list_ptr = layout_ptr->GetBlockPtr(memory_ptr, DataLayout::GRAPH_EDGE_LIST); io::readHSGR(hsgr_file, graph_node_list_ptr, hsgr_header.number_of_nodes, graph_edge_list_ptr, hsgr_header.number_of_edges); } // store the filename of the on-disk portion of the RTree { const auto file_index_path_ptr = layout_ptr->GetBlockPtr(memory_ptr, DataLayout::FILE_INDEX_PATH); // make sure we have 0 ending std::fill(file_index_path_ptr, file_index_path_ptr + layout_ptr->GetBlockSize(DataLayout::FILE_INDEX_PATH), 0); auto absolute_file_index_path = boost::filesystem::absolute(config.file_index_path); std::copy(absolute_file_index_path.string().begin(), absolute_file_index_path.string().end(), file_index_path_ptr); } // Name data { io::File name_file(config.names_data_path); const auto name_blocks_count = name_file.readElementCount32(); const auto name_char_list_count = name_file.readElementCount32(); using NameRangeTable = util::RangeTable<16, true>; BOOST_ASSERT(name_blocks_count * sizeof(unsigned) == layout_ptr->GetBlockSize(DataLayout::NAME_OFFSETS)); BOOST_ASSERT(name_blocks_count * sizeof(typename NameRangeTable::BlockT) == layout_ptr->GetBlockSize(DataLayout::NAME_BLOCKS)); // Loading street names const auto name_offsets_ptr = layout_ptr->GetBlockPtr(memory_ptr, DataLayout::NAME_OFFSETS); name_file.readInto(name_offsets_ptr, name_blocks_count); const auto name_blocks_ptr = layout_ptr->GetBlockPtr(memory_ptr, DataLayout::NAME_BLOCKS); name_file.readInto(reinterpret_cast(name_blocks_ptr), layout_ptr->GetBlockSize(DataLayout::NAME_BLOCKS)); // The file format contains the element count a second time. Don't know why, // but we need to read it here to progress the file pointer to the correct spot const auto temp_count = name_file.readElementCount32(); const auto name_char_ptr = layout_ptr->GetBlockPtr(memory_ptr, DataLayout::NAME_CHAR_LIST); BOOST_ASSERT_MSG(layout_ptr->AlignBlockSize(temp_count) == layout_ptr->GetBlockSize(DataLayout::NAME_CHAR_LIST), "Name file corrupted!"); name_file.readInto(name_char_ptr, temp_count); } // Turn lane data { io::File lane_data_file(config.turn_lane_data_path); const auto lane_tuple_count = lane_data_file.readElementCount64(); // Need to call GetBlockPtr -> it write the memory canary, even if no data needs to be // loaded. const auto turn_lane_data_ptr = layout_ptr->GetBlockPtr( memory_ptr, DataLayout::TURN_LANE_DATA); BOOST_ASSERT(lane_tuple_count * sizeof(util::guidance::LaneTupleIdPair) == layout_ptr->GetBlockSize(DataLayout::TURN_LANE_DATA)); lane_data_file.readInto(turn_lane_data_ptr, lane_tuple_count); } // Turn lane descriptions { /* NOTE: file io - refactor this in the future */ std::vector lane_description_offsets; std::vector lane_description_masks; if (!util::deserializeAdjacencyArray(config.turn_lane_description_path.string(), lane_description_offsets, lane_description_masks)) throw util::exception("Failed to read lane descriptions from: " + config.turn_lane_description_path.string()); /* END NOTE */ const auto turn_lane_offset_ptr = layout_ptr->GetBlockPtr( memory_ptr, DataLayout::LANE_DESCRIPTION_OFFSETS); if (!lane_description_offsets.empty()) { BOOST_ASSERT(layout_ptr->GetBlockSize(DataLayout::LANE_DESCRIPTION_OFFSETS) >= sizeof(lane_description_offsets[0]) * lane_description_offsets.size()); std::copy(lane_description_offsets.begin(), lane_description_offsets.end(), turn_lane_offset_ptr); } const auto turn_lane_mask_ptr = layout_ptr->GetBlockPtr( memory_ptr, DataLayout::LANE_DESCRIPTION_MASKS); if (!lane_description_masks.empty()) { BOOST_ASSERT(layout_ptr->GetBlockSize(DataLayout::LANE_DESCRIPTION_MASKS) >= sizeof(lane_description_masks[0]) * lane_description_masks.size()); std::copy( lane_description_masks.begin(), lane_description_masks.end(), turn_lane_mask_ptr); } } // Load original edge data { io::File edges_input_file(config.edges_data_path); const auto number_of_original_edges = edges_input_file.readElementCount64(); const auto via_geometry_ptr = layout_ptr->GetBlockPtr(memory_ptr, DataLayout::VIA_NODE_LIST); const auto name_id_ptr = layout_ptr->GetBlockPtr(memory_ptr, DataLayout::NAME_ID_LIST); const auto travel_mode_ptr = layout_ptr->GetBlockPtr( memory_ptr, DataLayout::TRAVEL_MODE); const auto pre_turn_bearing_ptr = layout_ptr->GetBlockPtr( memory_ptr, DataLayout::PRE_TURN_BEARING); const auto post_turn_bearing_ptr = layout_ptr->GetBlockPtr( memory_ptr, DataLayout::POST_TURN_BEARING); const auto lane_data_id_ptr = layout_ptr->GetBlockPtr(memory_ptr, DataLayout::LANE_DATA_ID); const auto turn_instructions_ptr = layout_ptr->GetBlockPtr( memory_ptr, DataLayout::TURN_INSTRUCTION); const auto entry_class_id_ptr = layout_ptr->GetBlockPtr(memory_ptr, DataLayout::ENTRY_CLASSID); io::readEdges(edges_input_file, via_geometry_ptr, name_id_ptr, turn_instructions_ptr, lane_data_id_ptr, travel_mode_ptr, entry_class_id_ptr, pre_turn_bearing_ptr, post_turn_bearing_ptr, number_of_original_edges); } // load compressed geometry { io::File geometry_input_file(config.geometries_path); const auto geometry_index_count = geometry_input_file.readElementCount32(); const auto geometries_index_ptr = layout_ptr->GetBlockPtr(memory_ptr, DataLayout::GEOMETRIES_INDEX); BOOST_ASSERT(geometry_index_count == layout_ptr->num_entries[DataLayout::GEOMETRIES_INDEX]); geometry_input_file.readInto(geometries_index_ptr, geometry_index_count); const auto geometries_node_id_list_ptr = layout_ptr->GetBlockPtr(memory_ptr, DataLayout::GEOMETRIES_NODE_LIST); const auto geometry_node_lists_count = geometry_input_file.readElementCount32(); BOOST_ASSERT(geometry_node_lists_count == layout_ptr->num_entries[DataLayout::GEOMETRIES_NODE_LIST]); geometry_input_file.readInto(geometries_node_id_list_ptr, geometry_node_lists_count); const auto geometries_fwd_weight_list_ptr = layout_ptr->GetBlockPtr( memory_ptr, DataLayout::GEOMETRIES_FWD_WEIGHT_LIST); BOOST_ASSERT(geometry_node_lists_count == layout_ptr->num_entries[DataLayout::GEOMETRIES_FWD_WEIGHT_LIST]); geometry_input_file.readInto(geometries_fwd_weight_list_ptr, geometry_node_lists_count); const auto geometries_rev_weight_list_ptr = layout_ptr->GetBlockPtr( memory_ptr, DataLayout::GEOMETRIES_REV_WEIGHT_LIST); BOOST_ASSERT(geometry_node_lists_count == layout_ptr->num_entries[DataLayout::GEOMETRIES_REV_WEIGHT_LIST]); geometry_input_file.readInto(geometries_rev_weight_list_ptr, geometry_node_lists_count); } { io::File geometry_datasource_file(config.datasource_indexes_path); const auto number_of_compressed_datasources = geometry_datasource_file.readElementCount64(); // load datasource information (if it exists) const auto datasources_list_ptr = layout_ptr->GetBlockPtr(memory_ptr, DataLayout::DATASOURCES_LIST); if (number_of_compressed_datasources > 0) { io::readDatasourceIndexes( geometry_datasource_file, datasources_list_ptr, number_of_compressed_datasources); } } { /* Load names */ io::File datasource_names_file(config.datasource_names_path); const auto datasource_names_data = io::readDatasourceNames(datasource_names_file); // load datasource name information (if it exists) const auto datasource_name_data_ptr = layout_ptr->GetBlockPtr(memory_ptr, DataLayout::DATASOURCE_NAME_DATA); if (layout_ptr->GetBlockSize(DataLayout::DATASOURCE_NAME_DATA) > 0) { std::copy(datasource_names_data.names.begin(), datasource_names_data.names.end(), datasource_name_data_ptr); } const auto datasource_name_offsets_ptr = layout_ptr->GetBlockPtr( memory_ptr, DataLayout::DATASOURCE_NAME_OFFSETS); if (layout_ptr->GetBlockSize(DataLayout::DATASOURCE_NAME_OFFSETS) > 0) { std::copy(datasource_names_data.offsets.begin(), datasource_names_data.offsets.end(), datasource_name_offsets_ptr); } const auto datasource_name_lengths_ptr = layout_ptr->GetBlockPtr( memory_ptr, DataLayout::DATASOURCE_NAME_LENGTHS); if (layout_ptr->GetBlockSize(DataLayout::DATASOURCE_NAME_LENGTHS) > 0) { std::copy(datasource_names_data.lengths.begin(), datasource_names_data.lengths.end(), datasource_name_lengths_ptr); } } // Loading list of coordinates { io::File nodes_file(config.nodes_data_path); nodes_file.skip(1); // node_count const auto coordinates_ptr = layout_ptr->GetBlockPtr( memory_ptr, DataLayout::COORDINATE_LIST); const auto osmnodeid_ptr = layout_ptr->GetBlockPtr(memory_ptr, DataLayout::OSM_NODE_ID_LIST); util::PackedVector osmnodeid_list; osmnodeid_list.reset(osmnodeid_ptr, layout_ptr->num_entries[DataLayout::OSM_NODE_ID_LIST]); io::readNodes(nodes_file, coordinates_ptr, osmnodeid_list, layout_ptr->num_entries[DataLayout::COORDINATE_LIST]); } // store timestamp { io::File timestamp_file(config.timestamp_path); const auto timestamp_size = timestamp_file.size(); const auto timestamp_ptr = layout_ptr->GetBlockPtr(memory_ptr, DataLayout::TIMESTAMP); BOOST_ASSERT(timestamp_size == layout_ptr->num_entries[DataLayout::TIMESTAMP]); timestamp_file.readInto(timestamp_ptr, timestamp_size); } // store search tree portion of rtree { io::File tree_node_file(config.ram_index_path); // perform this read so that we're at the right stream position for the next // read. tree_node_file.skip(1); const auto rtree_ptr = layout_ptr->GetBlockPtr(memory_ptr, DataLayout::R_SEARCH_TREE); io::readRamIndex( tree_node_file, rtree_ptr, layout_ptr->num_entries[DataLayout::R_SEARCH_TREE]); } { io::File core_marker_file(config.core_data_path); const auto number_of_core_markers = core_marker_file.readElementCount32(); // load core markers std::vector unpacked_core_markers(number_of_core_markers); core_marker_file.readInto(unpacked_core_markers.data(), number_of_core_markers); const auto core_marker_ptr = layout_ptr->GetBlockPtr(memory_ptr, DataLayout::CORE_MARKER); for (auto i = 0u; i < number_of_core_markers; ++i) { BOOST_ASSERT(unpacked_core_markers[i] == 0 || unpacked_core_markers[i] == 1); if (unpacked_core_markers[i] == 1) { const unsigned bucket = i / 32; const unsigned offset = i % 32; const unsigned value = [&] { unsigned return_value = 0; if (0 != offset) { return_value = core_marker_ptr[bucket]; } return return_value; }(); core_marker_ptr[bucket] = (value | (1u << offset)); } } } // load profile properties { io::File profile_properties_file(config.properties_path); const auto profile_properties_ptr = layout_ptr->GetBlockPtr(memory_ptr, DataLayout::PROPERTIES); const auto properties_size = io::readPropertiesCount(); io::readProperties(profile_properties_file, profile_properties_ptr, properties_size); } // Load intersection data { io::File intersection_file(config.intersection_class_path, true); std::vector bearing_class_id_table; intersection_file.deserializeVector(bearing_class_id_table); const auto bearing_blocks = intersection_file.readElementCount32(); intersection_file.skip(1); // sum_lengths std::vector bearing_offsets_data(bearing_blocks); std::vector::BlockT> bearing_blocks_data( bearing_blocks); intersection_file.readInto(bearing_offsets_data.data(), bearing_blocks); intersection_file.readInto(bearing_blocks_data.data(), bearing_blocks); const auto num_bearings = intersection_file.readElementCount64(); std::vector bearing_class_table(num_bearings); intersection_file.readInto(bearing_class_table.data(), num_bearings); std::vector entry_class_table; intersection_file.deserializeVector(entry_class_table); // load intersection classes if (!bearing_class_id_table.empty()) { const auto bearing_id_ptr = layout_ptr->GetBlockPtr( memory_ptr, DataLayout::BEARING_CLASSID); std::copy(bearing_class_id_table.begin(), bearing_class_id_table.end(), bearing_id_ptr); } if (layout_ptr->GetBlockSize(DataLayout::BEARING_OFFSETS) > 0) { const auto bearing_offsets_ptr = layout_ptr->GetBlockPtr(memory_ptr, DataLayout::BEARING_OFFSETS); std::copy( bearing_offsets_data.begin(), bearing_offsets_data.end(), bearing_offsets_ptr); } if (layout_ptr->GetBlockSize(DataLayout::BEARING_BLOCKS) > 0) { const auto bearing_blocks_ptr = layout_ptr->GetBlockPtr::BlockT, true>( memory_ptr, DataLayout::BEARING_BLOCKS); std::copy(bearing_blocks_data.begin(), bearing_blocks_data.end(), bearing_blocks_ptr); } if (!bearing_class_table.empty()) { const auto bearing_class_ptr = layout_ptr->GetBlockPtr( memory_ptr, DataLayout::BEARING_VALUES); std::copy(bearing_class_table.begin(), bearing_class_table.end(), bearing_class_ptr); } if (!entry_class_table.empty()) { const auto entry_class_ptr = layout_ptr->GetBlockPtr( memory_ptr, DataLayout::ENTRY_CLASS); std::copy(entry_class_table.begin(), entry_class_table.end(), entry_class_ptr); } } } } }