#include "storage/storage.hpp" #include "contractor/query_edge.hpp" #include "extractor/compressed_edge_container.hpp" #include "extractor/guidance/turn_instruction.hpp" #include "extractor/original_edge_data.hpp" #include "extractor/profile_properties.hpp" #include "extractor/query_node.hpp" #include "extractor/travel_mode.hpp" #include "storage/io.hpp" #include "storage/shared_barriers.hpp" #include "storage/shared_datatype.hpp" #include "storage/shared_memory.hpp" #include "engine/datafacade/datafacade_base.hpp" #include "util/coordinate.hpp" #include "util/exception.hpp" #include "util/fingerprint.hpp" #include "util/io.hpp" #include "util/packed_vector.hpp" #include "util/range_table.hpp" #include "util/shared_memory_vector_wrapper.hpp" #include "util/simple_logger.hpp" #include "util/static_graph.hpp" #include "util/static_rtree.hpp" #include "util/typedefs.hpp" #ifdef __linux__ #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace osrm { namespace storage { using RTreeLeaf = engine::datafacade::BaseDataFacade::RTreeLeaf; using RTreeNode = util::StaticRTree::vector, true>::TreeNode; using QueryGraph = util::StaticGraph; Storage::Storage(StorageConfig config_) : config(std::move(config_)) {} struct RegionsLayout { SharedDataType current_layout_region; SharedDataType current_data_region; boost::interprocess::named_sharable_mutex ¤t_regions_mutex; SharedDataType old_layout_region; SharedDataType old_data_region; boost::interprocess::named_sharable_mutex &old_regions_mutex; }; RegionsLayout getRegionsLayout(SharedBarriers &barriers) { if (SharedMemory::RegionExists(CURRENT_REGIONS)) { auto shared_regions = makeSharedMemory(CURRENT_REGIONS); const auto shared_timestamp = static_cast(shared_regions->Ptr()); if (shared_timestamp->data == DATA_1) { BOOST_ASSERT(shared_timestamp->layout == LAYOUT_1); return RegionsLayout{LAYOUT_1, DATA_1, barriers.regions_1_mutex, LAYOUT_2, DATA_2, barriers.regions_2_mutex}; } BOOST_ASSERT(shared_timestamp->data == DATA_2); BOOST_ASSERT(shared_timestamp->layout == LAYOUT_2); } return RegionsLayout{ LAYOUT_2, DATA_2, barriers.regions_2_mutex, LAYOUT_1, DATA_1, barriers.regions_1_mutex}; } Storage::ReturnCode Storage::Run(int max_wait) { BOOST_ASSERT_MSG(config.IsValid(), "Invalid storage config"); util::LogPolicy::GetInstance().Unmute(); SharedBarriers barriers; boost::interprocess::upgradable_lock current_regions_lock(barriers.current_regions_mutex, boost::interprocess::defer_lock); try { if (!current_regions_lock.try_lock()) { util::SimpleLogger().Write(logWARNING) << "A data update is in progress"; return ReturnCode::Error; } } // hard unlock in case of any exception. catch (boost::interprocess::lock_exception &ex) { barriers.current_regions_mutex.unlock_upgradable(); // make sure we exit here because this is bad throw; } #ifdef __linux__ // try to disable swapping on Linux const bool lock_flags = MCL_CURRENT | MCL_FUTURE; if (-1 == mlockall(lock_flags)) { util::SimpleLogger().Write(logWARNING) << "Could not request RAM lock"; } #endif auto regions_layout = getRegionsLayout(barriers); const SharedDataType layout_region = regions_layout.old_layout_region; const SharedDataType data_region = regions_layout.old_data_region; if (max_wait > 0) { util::SimpleLogger().Write() << "Waiting for " << max_wait << " second for all queries on the old dataset to finish:"; } else { util::SimpleLogger().Write() << "Waiting for all queries on the old dataset to finish:"; } boost::interprocess::scoped_lock regions_lock( regions_layout.old_regions_mutex, boost::interprocess::defer_lock); if (max_wait > 0) { if (!regions_lock.timed_lock(boost::posix_time::microsec_clock::universal_time() + boost::posix_time::seconds(max_wait))) { util::SimpleLogger().Write(logWARNING) << "Queries did not finish in " << max_wait << " seconds. Claiming the lock by force."; // WARNING: if queries are still using the old dataset they might crash if (regions_layout.old_layout_region == LAYOUT_1) { BOOST_ASSERT(regions_layout.old_data_region == DATA_1); barriers.resetRegions1(); } else { BOOST_ASSERT(regions_layout.old_layout_region == LAYOUT_2); BOOST_ASSERT(regions_layout.old_data_region == DATA_2); barriers.resetRegions2(); } return ReturnCode::Retry; } } else { regions_lock.lock(); } util::SimpleLogger().Write() << "Ok."; // since we can't change the size of a shared memory regions we delete and reallocate if (SharedMemory::RegionExists(layout_region) && !SharedMemory::Remove(layout_region)) { throw util::exception("Could not remove " + regionToString(layout_region)); } if (SharedMemory::RegionExists(data_region) && !SharedMemory::Remove(data_region)) { throw util::exception("Could not remove " + regionToString(data_region)); } // Allocate a memory layout in shared memory auto layout_memory = makeSharedMemory(layout_region, sizeof(DataLayout), true); auto shared_layout_ptr = new (layout_memory->Ptr()) DataLayout(); LoadLayout(shared_layout_ptr); // allocate shared memory block util::SimpleLogger().Write() << "allocating shared memory of " << shared_layout_ptr->GetSizeOfLayout() << " bytes"; auto shared_memory = makeSharedMemory(data_region, shared_layout_ptr->GetSizeOfLayout(), true); char *shared_memory_ptr = static_cast(shared_memory->Ptr()); LoadData(shared_layout_ptr, shared_memory_ptr); auto data_type_memory = makeSharedMemory(CURRENT_REGIONS, sizeof(SharedDataTimestamp), true); SharedDataTimestamp *data_timestamp_ptr = static_cast(data_type_memory->Ptr()); { boost::interprocess::scoped_lock current_regions_exclusive_lock; if (max_wait > 0) { util::SimpleLogger().Write() << "Waiting for " << max_wait << " seconds to write new dataset timestamp"; auto end_time = boost::posix_time::microsec_clock::universal_time() + boost::posix_time::seconds(max_wait); current_regions_exclusive_lock = boost::interprocess::scoped_lock( std::move(current_regions_lock), end_time); if (!current_regions_exclusive_lock.owns()) { util::SimpleLogger().Write(logWARNING) << "Aquiring the lock timed out after " << max_wait << " seconds. Claiming the lock by force."; current_regions_lock.unlock(); current_regions_lock.release(); storage::SharedBarriers::resetCurrentRegions(); return ReturnCode::Retry; } } else { util::SimpleLogger().Write() << "Waiting to write new dataset timestamp"; current_regions_exclusive_lock = boost::interprocess::scoped_lock( std::move(current_regions_lock)); } util::SimpleLogger().Write() << "Ok."; data_timestamp_ptr->layout = layout_region; data_timestamp_ptr->data = data_region; data_timestamp_ptr->timestamp += 1; } util::SimpleLogger().Write() << "All data loaded."; return ReturnCode::Ok; } /** * This function examines all our data files and figures out how much * memory needs to be allocated, and the position of each data structure * in that big block. It updates the fields in the DataLayout parameter. */ void Storage::LoadLayout(DataLayout *layout_ptr) { auto absolute_file_index_path = boost::filesystem::absolute(config.file_index_path); layout_ptr->SetBlockSize(DataLayout::FILE_INDEX_PATH, absolute_file_index_path.string().length() + 1); // collect number of elements to store in shared memory object util::SimpleLogger().Write() << "load names from: " << config.names_data_path; // number of entries in name index boost::filesystem::ifstream name_stream(config.names_data_path, std::ios::binary); if (!name_stream) { throw util::exception("Could not open " + config.names_data_path.string() + " for reading."); } unsigned name_blocks = 0; name_stream.read((char *)&name_blocks, sizeof(unsigned)); layout_ptr->SetBlockSize(DataLayout::NAME_OFFSETS, name_blocks); layout_ptr->SetBlockSize::BlockT>(DataLayout::NAME_BLOCKS, name_blocks); BOOST_ASSERT_MSG(0 != name_blocks, "name file broken"); unsigned number_of_chars = 0; name_stream.read((char *)&number_of_chars, sizeof(unsigned)); layout_ptr->SetBlockSize(DataLayout::NAME_CHAR_LIST, number_of_chars); std::vector lane_description_offsets; std::vector lane_description_masks; if (!util::deserializeAdjacencyArray(config.turn_lane_description_path.string(), lane_description_offsets, lane_description_masks)) throw util::exception("Failed to read lane descriptions from: " + config.turn_lane_description_path.string()); layout_ptr->SetBlockSize(DataLayout::LANE_DESCRIPTION_OFFSETS, lane_description_offsets.size()); layout_ptr->SetBlockSize( DataLayout::LANE_DESCRIPTION_MASKS, lane_description_masks.size()); // Loading information for original edges boost::filesystem::ifstream edges_input_stream(config.edges_data_path, std::ios::binary); if (!edges_input_stream) { throw util::exception("Could not open " + config.edges_data_path.string() + " for reading."); } const auto number_of_original_edges = io::readElementCount(edges_input_stream); // note: settings this all to the same size is correct, we extract them from the same struct layout_ptr->SetBlockSize(DataLayout::VIA_NODE_LIST, number_of_original_edges); layout_ptr->SetBlockSize(DataLayout::NAME_ID_LIST, number_of_original_edges); layout_ptr->SetBlockSize(DataLayout::TRAVEL_MODE, number_of_original_edges); layout_ptr->SetBlockSize(DataLayout::PRE_TURN_BEARING, number_of_original_edges); layout_ptr->SetBlockSize(DataLayout::POST_TURN_BEARING, number_of_original_edges); layout_ptr->SetBlockSize(DataLayout::TURN_INSTRUCTION, number_of_original_edges); layout_ptr->SetBlockSize(DataLayout::LANE_DATA_ID, number_of_original_edges); layout_ptr->SetBlockSize(DataLayout::ENTRY_CLASSID, number_of_original_edges); boost::filesystem::ifstream hsgr_input_stream(config.hsgr_data_path, std::ios::binary); if (!hsgr_input_stream) { throw util::exception("Could not open " + config.hsgr_data_path.string() + " for reading."); } const auto hsgr_header = io::readHSGRHeader(hsgr_input_stream); layout_ptr->SetBlockSize(DataLayout::HSGR_CHECKSUM, 1); layout_ptr->SetBlockSize(DataLayout::GRAPH_NODE_LIST, hsgr_header.number_of_nodes); layout_ptr->SetBlockSize(DataLayout::GRAPH_EDGE_LIST, hsgr_header.number_of_edges); // load rsearch tree size boost::filesystem::ifstream tree_node_file(config.ram_index_path, std::ios::binary); const auto tree_size = io::readElementCount(tree_node_file); layout_ptr->SetBlockSize(DataLayout::R_SEARCH_TREE, tree_size); // allocate space in shared memory for profile properties const auto properties_size = io::readPropertiesCount(); layout_ptr->SetBlockSize(DataLayout::PROPERTIES, properties_size); // read timestampsize boost::filesystem::ifstream timestamp_stream(config.timestamp_path); if (!timestamp_stream) { throw util::exception("Could not open " + config.timestamp_path.string() + " for reading."); } const auto timestamp_size = io::readNumberOfBytes(timestamp_stream); layout_ptr->SetBlockSize(DataLayout::TIMESTAMP, timestamp_size); // load core marker size boost::filesystem::ifstream core_marker_file(config.core_data_path, std::ios::binary); if (!core_marker_file) { throw util::exception("Could not open " + config.core_data_path.string() + " for reading."); } uint32_t number_of_core_markers = 0; core_marker_file.read((char *)&number_of_core_markers, sizeof(uint32_t)); layout_ptr->SetBlockSize(DataLayout::CORE_MARKER, number_of_core_markers); // load coordinate size boost::filesystem::ifstream nodes_input_stream(config.nodes_data_path, std::ios::binary); if (!nodes_input_stream) { throw util::exception("Could not open " + config.core_data_path.string() + " for reading."); } const auto coordinate_list_size = io::readElementCount(nodes_input_stream); layout_ptr->SetBlockSize(DataLayout::COORDINATE_LIST, coordinate_list_size); // we'll read a list of OSM node IDs from the same data, so set the block size for the same // number of items: layout_ptr->SetBlockSize( DataLayout::OSM_NODE_ID_LIST, util::PackedVector::elements_to_blocks(coordinate_list_size)); // load geometries sizes boost::filesystem::ifstream geometry_input_stream(config.geometries_path, std::ios::binary); if (!geometry_input_stream) { throw util::exception("Could not open " + config.geometries_path.string() + " for reading."); } unsigned number_of_geometries_indices = 0; unsigned number_of_compressed_geometries = 0; geometry_input_stream.read((char *)&number_of_geometries_indices, sizeof(unsigned)); layout_ptr->SetBlockSize(DataLayout::GEOMETRIES_INDEX, number_of_geometries_indices); boost::iostreams::seek( geometry_input_stream, number_of_geometries_indices * sizeof(unsigned), BOOST_IOS::cur); geometry_input_stream.read((char *)&number_of_compressed_geometries, sizeof(unsigned)); layout_ptr->SetBlockSize(DataLayout::GEOMETRIES_NODE_LIST, number_of_compressed_geometries); layout_ptr->SetBlockSize(DataLayout::GEOMETRIES_FWD_WEIGHT_LIST, number_of_compressed_geometries); layout_ptr->SetBlockSize(DataLayout::GEOMETRIES_REV_WEIGHT_LIST, number_of_compressed_geometries); // load datasource sizes. This file is optional, and it's non-fatal if it doesn't // exist. boost::filesystem::ifstream geometry_datasource_input_stream(config.datasource_indexes_path, std::ios::binary); if (!geometry_datasource_input_stream) { throw util::exception("Could not open " + config.datasource_indexes_path.string() + " for reading."); } const auto number_of_compressed_datasources = io::readElementCount(geometry_datasource_input_stream); layout_ptr->SetBlockSize(DataLayout::DATASOURCES_LIST, number_of_compressed_datasources); // Load datasource name sizes. This file is optional, and it's non-fatal if it doesn't // exist boost::filesystem::ifstream datasource_names_input_stream(config.datasource_names_path, std::ios::binary); if (!datasource_names_input_stream) { throw util::exception("Could not open " + config.datasource_names_path.string() + " for reading."); } const io::DatasourceNamesData datasource_names_data = io::readDatasourceNames(datasource_names_input_stream); layout_ptr->SetBlockSize(DataLayout::DATASOURCE_NAME_DATA, datasource_names_data.names.size()); layout_ptr->SetBlockSize(DataLayout::DATASOURCE_NAME_OFFSETS, datasource_names_data.offsets.size()); layout_ptr->SetBlockSize(DataLayout::DATASOURCE_NAME_LENGTHS, datasource_names_data.lengths.size()); boost::filesystem::ifstream intersection_stream(config.intersection_class_path, std::ios::binary); if (!static_cast(intersection_stream)) throw util::exception("Could not open " + config.intersection_class_path.string() + " for reading."); if (!util::readAndCheckFingerprint(intersection_stream)) throw util::exception("Fingerprint of " + config.intersection_class_path.string() + " does not match or could not read from file"); std::vector bearing_class_id_table; if (!util::deserializeVector(intersection_stream, bearing_class_id_table)) throw util::exception("Failed to bearing class ids read from " + config.names_data_path.string()); layout_ptr->SetBlockSize(DataLayout::BEARING_CLASSID, bearing_class_id_table.size()); unsigned bearing_blocks = 0; intersection_stream.read((char *)&bearing_blocks, sizeof(unsigned)); unsigned sum_lengths = 0; intersection_stream.read((char *)&sum_lengths, sizeof(unsigned)); layout_ptr->SetBlockSize(DataLayout::BEARING_OFFSETS, bearing_blocks); layout_ptr->SetBlockSize::BlockT>( DataLayout::BEARING_BLOCKS, bearing_blocks); std::vector bearing_offsets_data(bearing_blocks); std::vector::BlockT> bearing_blocks_data(bearing_blocks); if (bearing_blocks) { intersection_stream.read(reinterpret_cast(&bearing_offsets_data[0]), bearing_blocks * sizeof(bearing_offsets_data[0])); } if (bearing_blocks) { intersection_stream.read(reinterpret_cast(&bearing_blocks_data[0]), bearing_blocks * sizeof(bearing_blocks_data[0])); } std::uint64_t num_bearings; intersection_stream.read(reinterpret_cast(&num_bearings), sizeof(num_bearings)); std::vector bearing_class_table(num_bearings); intersection_stream.read(reinterpret_cast(&bearing_class_table[0]), sizeof(bearing_class_table[0]) * num_bearings); layout_ptr->SetBlockSize(DataLayout::BEARING_VALUES, num_bearings); // Loading turn lane data boost::filesystem::ifstream lane_data_stream(config.turn_lane_data_path, std::ios::binary); std::uint64_t lane_tupel_count = 0; lane_data_stream.read(reinterpret_cast(&lane_tupel_count), sizeof(lane_tupel_count)); layout_ptr->SetBlockSize(DataLayout::TURN_LANE_DATA, lane_tupel_count); if (!static_cast(intersection_stream)) throw util::exception("Failed to read bearing values from " + config.intersection_class_path.string()); std::vector entry_class_table; if (!util::deserializeVector(intersection_stream, entry_class_table)) throw util::exception("Failed to read entry classes from " + config.intersection_class_path.string()); layout_ptr->SetBlockSize(DataLayout::ENTRY_CLASS, entry_class_table.size()); } void Storage::LoadData(DataLayout *layout_ptr, char *memory_ptr) { // read actual data into shared memory object // // hsgr checksum { boost::filesystem::ifstream hsgr_input_stream(config.hsgr_data_path, std::ios::binary); auto hsgr_header = io::readHSGRHeader(hsgr_input_stream); unsigned *checksum_ptr = layout_ptr->GetBlockPtr(memory_ptr, DataLayout::HSGR_CHECKSUM); *checksum_ptr = hsgr_header.checksum; // load the nodes of the search graph QueryGraph::NodeArrayEntry *graph_node_list_ptr = layout_ptr->GetBlockPtr(memory_ptr, DataLayout::GRAPH_NODE_LIST); // load the edges of the search graph QueryGraph::EdgeArrayEntry *graph_edge_list_ptr = layout_ptr->GetBlockPtr(memory_ptr, DataLayout::GRAPH_EDGE_LIST); io::readHSGR(hsgr_input_stream, graph_node_list_ptr, hsgr_header.number_of_nodes, graph_edge_list_ptr, hsgr_header.number_of_edges); hsgr_input_stream.close(); } // ram index file name { char *file_index_path_ptr = layout_ptr->GetBlockPtr(memory_ptr, DataLayout::FILE_INDEX_PATH); // make sure we have 0 ending std::fill(file_index_path_ptr, file_index_path_ptr + layout_ptr->GetBlockSize(DataLayout::FILE_INDEX_PATH), 0); auto absolute_file_index_path = boost::filesystem::absolute(config.file_index_path); std::copy(absolute_file_index_path.string().begin(), absolute_file_index_path.string().end(), file_index_path_ptr); } // Name data { /* To be replaced by io loading code */ boost::filesystem::ifstream name_stream(config.names_data_path, std::ios::binary); unsigned name_blocks = 0; name_stream.read((char *)&name_blocks, sizeof(unsigned)); unsigned number_of_chars = 0; name_stream.read((char *)&number_of_chars, sizeof(unsigned)); /* END to be replaced */ // Loading street names unsigned *name_offsets_ptr = layout_ptr->GetBlockPtr(memory_ptr, DataLayout::NAME_OFFSETS); if (layout_ptr->GetBlockSize(DataLayout::NAME_OFFSETS) > 0) { name_stream.read((char *)name_offsets_ptr, layout_ptr->GetBlockSize(DataLayout::NAME_OFFSETS)); } unsigned *name_blocks_ptr = layout_ptr->GetBlockPtr(memory_ptr, DataLayout::NAME_BLOCKS); if (layout_ptr->GetBlockSize(DataLayout::NAME_BLOCKS) > 0) { name_stream.read((char *)name_blocks_ptr, layout_ptr->GetBlockSize(DataLayout::NAME_BLOCKS)); } char *name_char_ptr = layout_ptr->GetBlockPtr(memory_ptr, DataLayout::NAME_CHAR_LIST); unsigned temp_length = 0; name_stream.read((char *)&temp_length, sizeof(unsigned)); BOOST_ASSERT_MSG(layout_ptr->AlignBlockSize(temp_length) == layout_ptr->GetBlockSize(DataLayout::NAME_CHAR_LIST), "Name file corrupted!"); if (layout_ptr->GetBlockSize(DataLayout::NAME_CHAR_LIST) > 0) { name_stream.read(name_char_ptr, layout_ptr->GetBlockSize(DataLayout::NAME_CHAR_LIST)); } } // Turn lane data { /* NOTE: file io - refactor this in the future */ boost::filesystem::ifstream lane_data_stream(config.turn_lane_data_path, std::ios::binary); std::uint64_t lane_tupel_count = 0; lane_data_stream.read(reinterpret_cast(&lane_tupel_count), sizeof(lane_tupel_count)); /* END NOTE */ // make sure do write canary... auto *turn_lane_data_ptr = layout_ptr->GetBlockPtr( memory_ptr, DataLayout::TURN_LANE_DATA); if (layout_ptr->GetBlockSize(DataLayout::TURN_LANE_DATA) > 0) { lane_data_stream.read(reinterpret_cast(turn_lane_data_ptr), layout_ptr->GetBlockSize(DataLayout::TURN_LANE_DATA)); } lane_data_stream.close(); } // Turn lane descriptions { /* NOTE: file io - refactor this in the future */ std::vector lane_description_offsets; std::vector lane_description_masks; if (!util::deserializeAdjacencyArray(config.turn_lane_description_path.string(), lane_description_offsets, lane_description_masks)) throw util::exception("Failed to read lane descriptions from: " + config.turn_lane_description_path.string()); /* END NOTE */ auto *turn_lane_offset_ptr = layout_ptr->GetBlockPtr( memory_ptr, DataLayout::LANE_DESCRIPTION_OFFSETS); if (!lane_description_offsets.empty()) { BOOST_ASSERT(layout_ptr->GetBlockSize(DataLayout::LANE_DESCRIPTION_OFFSETS) >= sizeof(lane_description_offsets[0]) * lane_description_offsets.size()); std::copy(lane_description_offsets.begin(), lane_description_offsets.end(), turn_lane_offset_ptr); std::vector tmp; lane_description_offsets.swap(tmp); } auto *turn_lane_mask_ptr = layout_ptr->GetBlockPtr( memory_ptr, DataLayout::LANE_DESCRIPTION_MASKS); if (!lane_description_masks.empty()) { BOOST_ASSERT(layout_ptr->GetBlockSize(DataLayout::LANE_DESCRIPTION_MASKS) >= sizeof(lane_description_masks[0]) * lane_description_masks.size()); std::copy( lane_description_masks.begin(), lane_description_masks.end(), turn_lane_mask_ptr); std::vector tmp; lane_description_masks.swap(tmp); } } // Load original edge data { /* NOTE: file io - refactor this in the future */ boost::filesystem::ifstream edges_input_stream(config.edges_data_path, std::ios::binary); if (!edges_input_stream) { throw util::exception("Could not open " + config.edges_data_path.string() + " for reading."); } const auto number_of_original_edges = io::readElementCount(edges_input_stream); /* END NOTE */ GeometryID *via_geometry_ptr = layout_ptr->GetBlockPtr(memory_ptr, DataLayout::VIA_NODE_LIST); unsigned *name_id_ptr = layout_ptr->GetBlockPtr(memory_ptr, DataLayout::NAME_ID_LIST); extractor::TravelMode *travel_mode_ptr = layout_ptr->GetBlockPtr(memory_ptr, DataLayout::TRAVEL_MODE); util::guidance::TurnBearing *pre_turn_bearing_ptr = layout_ptr->GetBlockPtr( memory_ptr, DataLayout::PRE_TURN_BEARING); util::guidance::TurnBearing *post_turn_bearing_ptr = layout_ptr->GetBlockPtr( memory_ptr, DataLayout::POST_TURN_BEARING); LaneDataID *lane_data_id_ptr = layout_ptr->GetBlockPtr(memory_ptr, DataLayout::LANE_DATA_ID); extractor::guidance::TurnInstruction *turn_instructions_ptr = layout_ptr->GetBlockPtr( memory_ptr, DataLayout::TURN_INSTRUCTION); EntryClassID *entry_class_id_ptr = layout_ptr->GetBlockPtr(memory_ptr, DataLayout::ENTRY_CLASSID); io::readEdges(edges_input_stream, via_geometry_ptr, name_id_ptr, turn_instructions_ptr, lane_data_id_ptr, travel_mode_ptr, entry_class_id_ptr, pre_turn_bearing_ptr, post_turn_bearing_ptr, number_of_original_edges); } // load compressed geometry { /* NOTE: file io - refactor this in the future */ boost::filesystem::ifstream geometry_input_stream(config.geometries_path, std::ios::binary); /* END NOTE */ unsigned temporary_value; unsigned *geometries_index_ptr = layout_ptr->GetBlockPtr(memory_ptr, DataLayout::GEOMETRIES_INDEX); geometry_input_stream.seekg(0, geometry_input_stream.beg); geometry_input_stream.read((char *)&temporary_value, sizeof(unsigned)); BOOST_ASSERT(temporary_value == layout_ptr->num_entries[DataLayout::GEOMETRIES_INDEX]); if (layout_ptr->GetBlockSize(DataLayout::GEOMETRIES_INDEX) > 0) { geometry_input_stream.read((char *)geometries_index_ptr, layout_ptr->GetBlockSize(DataLayout::GEOMETRIES_INDEX)); } NodeID *geometries_node_id_list_ptr = layout_ptr->GetBlockPtr(memory_ptr, DataLayout::GEOMETRIES_NODE_LIST); geometry_input_stream.read((char *)&temporary_value, sizeof(unsigned)); BOOST_ASSERT(temporary_value == layout_ptr->num_entries[DataLayout::GEOMETRIES_NODE_LIST]); if (layout_ptr->GetBlockSize(DataLayout::GEOMETRIES_NODE_LIST) > 0) { geometry_input_stream.read((char *)geometries_node_id_list_ptr, layout_ptr->GetBlockSize(DataLayout::GEOMETRIES_NODE_LIST)); } EdgeWeight *geometries_fwd_weight_list_ptr = layout_ptr->GetBlockPtr( memory_ptr, DataLayout::GEOMETRIES_FWD_WEIGHT_LIST); BOOST_ASSERT(temporary_value == layout_ptr->num_entries[DataLayout::GEOMETRIES_FWD_WEIGHT_LIST]); if (layout_ptr->GetBlockSize(DataLayout::GEOMETRIES_FWD_WEIGHT_LIST) > 0) { geometry_input_stream.read( (char *)geometries_fwd_weight_list_ptr, layout_ptr->GetBlockSize(DataLayout::GEOMETRIES_FWD_WEIGHT_LIST)); } EdgeWeight *geometries_rev_weight_list_ptr = layout_ptr->GetBlockPtr( memory_ptr, DataLayout::GEOMETRIES_REV_WEIGHT_LIST); BOOST_ASSERT(temporary_value == layout_ptr->num_entries[DataLayout::GEOMETRIES_REV_WEIGHT_LIST]); if (layout_ptr->GetBlockSize(DataLayout::GEOMETRIES_REV_WEIGHT_LIST) > 0) { geometry_input_stream.read( (char *)geometries_rev_weight_list_ptr, layout_ptr->GetBlockSize(DataLayout::GEOMETRIES_REV_WEIGHT_LIST)); } } { boost::filesystem::ifstream geometry_datasource_input_stream(config.datasource_indexes_path, std::ios::binary); if (!geometry_datasource_input_stream) { throw util::exception("Could not open " + config.datasource_indexes_path.string() + " for reading."); } auto number_of_compressed_datasources = io::readElementCount(geometry_datasource_input_stream); // load datasource information (if it exists) auto datasources_list_ptr = layout_ptr->GetBlockPtr(memory_ptr, DataLayout::DATASOURCES_LIST); if (number_of_compressed_datasources > 0) { io::readDatasourceIndexes(geometry_datasource_input_stream, datasources_list_ptr, number_of_compressed_datasources); } } { /* Load names */ boost::filesystem::ifstream datasource_names_input_stream(config.datasource_names_path, std::ios::binary); if (!datasource_names_input_stream) { throw util::exception("Could not open " + config.datasource_names_path.string() + " for reading."); } const io::DatasourceNamesData datasource_names_data = io::readDatasourceNames(datasource_names_input_stream); // load datasource name information (if it exists) auto datasource_name_data_ptr = layout_ptr->GetBlockPtr(memory_ptr, DataLayout::DATASOURCE_NAME_DATA); if (layout_ptr->GetBlockSize(DataLayout::DATASOURCE_NAME_DATA) > 0) { std::copy(datasource_names_data.names.begin(), datasource_names_data.names.end(), datasource_name_data_ptr); } auto datasource_name_offsets_ptr = layout_ptr->GetBlockPtr( memory_ptr, DataLayout::DATASOURCE_NAME_OFFSETS); if (layout_ptr->GetBlockSize(DataLayout::DATASOURCE_NAME_OFFSETS) > 0) { std::copy(datasource_names_data.offsets.begin(), datasource_names_data.offsets.end(), datasource_name_offsets_ptr); } auto datasource_name_lengths_ptr = layout_ptr->GetBlockPtr( memory_ptr, DataLayout::DATASOURCE_NAME_LENGTHS); if (layout_ptr->GetBlockSize(DataLayout::DATASOURCE_NAME_LENGTHS) > 0) { std::copy(datasource_names_data.lengths.begin(), datasource_names_data.lengths.end(), datasource_name_lengths_ptr); } } // Loading list of coordinates { boost::filesystem::ifstream nodes_input_stream(config.nodes_data_path, std::ios::binary); io::readElementCount(nodes_input_stream); util::Coordinate *coordinates_ptr = layout_ptr->GetBlockPtr( memory_ptr, DataLayout::COORDINATE_LIST); std::uint64_t *osmnodeid_ptr = layout_ptr->GetBlockPtr(memory_ptr, DataLayout::OSM_NODE_ID_LIST); util::PackedVector osmnodeid_list; osmnodeid_list.reset(osmnodeid_ptr, layout_ptr->num_entries[DataLayout::OSM_NODE_ID_LIST]); io::readNodes(nodes_input_stream, coordinates_ptr, osmnodeid_list, layout_ptr->num_entries[DataLayout::COORDINATE_LIST]); } // store timestamp { /* NOTE: file io - refactor this in the future */ boost::filesystem::ifstream timestamp_stream(config.timestamp_path); const auto timestamp_size = io::readNumberOfBytes(timestamp_stream); /* END NOTE */ char *timestamp_ptr = layout_ptr->GetBlockPtr(memory_ptr, DataLayout::TIMESTAMP); io::readTimestamp(timestamp_stream, timestamp_ptr, timestamp_size); } // store search tree portion of rtree { boost::filesystem::ifstream tree_node_file(config.ram_index_path, std::ios::binary); io::readElementCount(tree_node_file); auto rtree_ptr = layout_ptr->GetBlockPtr(memory_ptr, DataLayout::R_SEARCH_TREE); io::readRamIndex( tree_node_file, rtree_ptr, layout_ptr->num_entries[DataLayout::R_SEARCH_TREE]); } { /* NOTE: file io - refactor this in the future */ boost::filesystem::ifstream core_marker_file(config.core_data_path, std::ios::binary); if (!core_marker_file) { throw util::exception("Could not open " + config.core_data_path.string() + " for reading."); } std::uint32_t number_of_core_markers = 0; core_marker_file.read((char *)&number_of_core_markers, sizeof(uint32_t)); /* END NOTE */ // load core markers std::vector unpacked_core_markers(number_of_core_markers); core_marker_file.read((char *)unpacked_core_markers.data(), sizeof(char) * number_of_core_markers); unsigned *core_marker_ptr = layout_ptr->GetBlockPtr(memory_ptr, DataLayout::CORE_MARKER); for (auto i = 0u; i < number_of_core_markers; ++i) { BOOST_ASSERT(unpacked_core_markers[i] == 0 || unpacked_core_markers[i] == 1); if (unpacked_core_markers[i] == 1) { const unsigned bucket = i / 32; const unsigned offset = i % 32; const unsigned value = [&] { unsigned return_value = 0; if (0 != offset) { return_value = core_marker_ptr[bucket]; } return return_value; }(); core_marker_ptr[bucket] = (value | (1u << offset)); } } } // load profile properties { boost::filesystem::ifstream profile_properties_stream(config.properties_path); if (!profile_properties_stream) { util::exception("Could not open " + config.properties_path.string() + " for reading!"); } io::readPropertiesCount(); auto profile_properties_ptr = layout_ptr->GetBlockPtr( memory_ptr, DataLayout::PROPERTIES); io::readProperties(profile_properties_stream, profile_properties_ptr, sizeof(extractor::ProfileProperties)); } // Load intersection data { boost::filesystem::ifstream intersection_stream(config.intersection_class_path, std::ios::binary); if (!static_cast(intersection_stream)) throw util::exception("Could not open " + config.intersection_class_path.string() + " for reading."); if (!util::readAndCheckFingerprint(intersection_stream)) throw util::exception("Fingerprint of " + config.intersection_class_path.string() + " does not match or could not read from file"); std::vector bearing_class_id_table; if (!util::deserializeVector(intersection_stream, bearing_class_id_table)) throw util::exception("Failed to bearing class ids read from " + config.names_data_path.string()); unsigned bearing_blocks = 0; intersection_stream.read((char *)&bearing_blocks, sizeof(unsigned)); unsigned sum_lengths = 0; intersection_stream.read((char *)&sum_lengths, sizeof(unsigned)); std::vector bearing_offsets_data(bearing_blocks); std::vector::BlockT> bearing_blocks_data( bearing_blocks); if (bearing_blocks) { intersection_stream.read(reinterpret_cast(&bearing_offsets_data[0]), bearing_blocks * sizeof(bearing_offsets_data[0])); } if (bearing_blocks) { intersection_stream.read(reinterpret_cast(&bearing_blocks_data[0]), bearing_blocks * sizeof(bearing_blocks_data[0])); } std::uint64_t num_bearings; intersection_stream.read(reinterpret_cast(&num_bearings), sizeof(num_bearings)); std::vector bearing_class_table(num_bearings); intersection_stream.read(reinterpret_cast(&bearing_class_table[0]), sizeof(bearing_class_table[0]) * num_bearings); std::vector entry_class_table; if (!util::deserializeVector(intersection_stream, entry_class_table)) throw util::exception("Failed to read entry classes from " + config.intersection_class_path.string()); // load intersection classes if (!bearing_class_id_table.empty()) { auto bearing_id_ptr = layout_ptr->GetBlockPtr( memory_ptr, DataLayout::BEARING_CLASSID); std::copy(bearing_class_id_table.begin(), bearing_class_id_table.end(), bearing_id_ptr); } if (layout_ptr->GetBlockSize(DataLayout::BEARING_OFFSETS) > 0) { auto *bearing_offsets_ptr = layout_ptr->GetBlockPtr(memory_ptr, DataLayout::BEARING_OFFSETS); std::copy( bearing_offsets_data.begin(), bearing_offsets_data.end(), bearing_offsets_ptr); } if (layout_ptr->GetBlockSize(DataLayout::BEARING_BLOCKS) > 0) { auto *bearing_blocks_ptr = layout_ptr->GetBlockPtr::BlockT, true>( memory_ptr, DataLayout::BEARING_BLOCKS); std::copy(bearing_blocks_data.begin(), bearing_blocks_data.end(), bearing_blocks_ptr); } if (!bearing_class_table.empty()) { auto bearing_class_ptr = layout_ptr->GetBlockPtr( memory_ptr, DataLayout::BEARING_VALUES); std::copy(bearing_class_table.begin(), bearing_class_table.end(), bearing_class_ptr); } if (!entry_class_table.empty()) { auto entry_class_ptr = layout_ptr->GetBlockPtr( memory_ptr, DataLayout::ENTRY_CLASS); std::copy(entry_class_table.begin(), entry_class_table.end(), entry_class_ptr); } } } } }