#ifndef ALTERNATIVE_PATH_ROUTING_HPP
#define ALTERNATIVE_PATH_ROUTING_HPP

#include "engine/routing_algorithms/routing_base.hpp"
#include "engine/search_engine_data.hpp"
#include "util/integer_range.hpp"

#include <boost/assert.hpp>

#include <algorithm>
#include <iterator>
#include <unordered_map>
#include <unordered_set>

#include <vector>

namespace osrm
{
namespace engine
{
namespace routing_algorithms
{

const double VIAPATH_ALPHA = 0.10;
const double VIAPATH_EPSILON = 0.15; // alternative at most 15% longer
const double VIAPATH_GAMMA = 0.75;   // alternative shares at most 75% with the shortest.

template <class DataFacadeT>
class AlternativeRouting final
    : private BasicRoutingInterface<DataFacadeT, AlternativeRouting<DataFacadeT>>
{
    using super = BasicRoutingInterface<DataFacadeT, AlternativeRouting<DataFacadeT>>;
    using EdgeData = typename DataFacadeT::EdgeData;
    using QueryHeap = SearchEngineData::QueryHeap;
    using SearchSpaceEdge = std::pair<NodeID, NodeID>;

    struct RankedCandidateNode
    {
        RankedCandidateNode(const NodeID node, const int length, const int sharing)
            : node(node), length(length), sharing(sharing)
        {
        }

        NodeID node;
        int length;
        int sharing;

        bool operator<(const RankedCandidateNode &other) const
        {
            return (2 * length + sharing) < (2 * other.length + other.sharing);
        }
    };
    DataFacadeT *facade;
    SearchEngineData &engine_working_data;

  public:
    AlternativeRouting(DataFacadeT *facade, SearchEngineData &engine_working_data)
        : super(facade), facade(facade), engine_working_data(engine_working_data)
    {
    }

    virtual ~AlternativeRouting() {}

    void operator()(const PhantomNodes &phantom_node_pair, InternalRouteResult &raw_route_data)
    {
        std::vector<NodeID> alternative_path;
        std::vector<NodeID> via_node_candidate_list;
        std::vector<SearchSpaceEdge> forward_search_space;
        std::vector<SearchSpaceEdge> reverse_search_space;

        // Init queues, semi-expensive because access to TSS invokes a sys-call
        engine_working_data.InitializeOrClearFirstThreadLocalStorage(
            super::facade->GetNumberOfNodes());
        engine_working_data.InitializeOrClearSecondThreadLocalStorage(
            super::facade->GetNumberOfNodes());
        engine_working_data.InitializeOrClearThirdThreadLocalStorage(
            super::facade->GetNumberOfNodes());

        QueryHeap &forward_heap1 = *(engine_working_data.forward_heap_1);
        QueryHeap &reverse_heap1 = *(engine_working_data.reverse_heap_1);
        QueryHeap &forward_heap2 = *(engine_working_data.forward_heap_2);
        QueryHeap &reverse_heap2 = *(engine_working_data.reverse_heap_2);

        int upper_bound_to_shortest_path_distance = INVALID_EDGE_WEIGHT;
        NodeID middle_node = SPECIAL_NODEID;
        const EdgeWeight min_edge_offset =
            std::min(-phantom_node_pair.source_phantom.GetForwardWeightPlusOffset(),
                     -phantom_node_pair.source_phantom.GetReverseWeightPlusOffset());

        if (phantom_node_pair.source_phantom.forward_node_id != SPECIAL_NODEID)
        {
            // util::SimpleLogger().Write(logDEBUG) << "fwd-a insert: " <<
            // phantom_node_pair.source_phantom.forward_node_id << ", w: " <<
            // -phantom_node_pair.source_phantom.GetForwardWeightPlusOffset();
            forward_heap1.Insert(phantom_node_pair.source_phantom.forward_node_id,
                                 -phantom_node_pair.source_phantom.GetForwardWeightPlusOffset(),
                                 phantom_node_pair.source_phantom.forward_node_id);
        }
        if (phantom_node_pair.source_phantom.reverse_node_id != SPECIAL_NODEID)
        {
            //     util::SimpleLogger().Write(logDEBUG) << "fwd-b insert: " <<
            //     phantom_node_pair.source_phantom.reverse_node_id << ", w: " <<
            // -phantom_node_pair.source_phantom.GetReverseWeightPlusOffset();
            forward_heap1.Insert(phantom_node_pair.source_phantom.reverse_node_id,
                                 -phantom_node_pair.source_phantom.GetReverseWeightPlusOffset(),
                                 phantom_node_pair.source_phantom.reverse_node_id);
        }

        if (phantom_node_pair.target_phantom.forward_node_id != SPECIAL_NODEID)
        {
            // util::SimpleLogger().Write(logDEBUG) << "rev-a insert: " <<
            // phantom_node_pair.target_phantom.forward_node_id << ", w: " <<
            // phantom_node_pair.target_phantom.GetForwardWeightPlusOffset();
            reverse_heap1.Insert(phantom_node_pair.target_phantom.forward_node_id,
                                 phantom_node_pair.target_phantom.GetForwardWeightPlusOffset(),
                                 phantom_node_pair.target_phantom.forward_node_id);
        }
        if (phantom_node_pair.target_phantom.reverse_node_id != SPECIAL_NODEID)
        {
            // util::SimpleLogger().Write(logDEBUG) << "rev-b insert: " <<
            // phantom_node_pair.target_phantom.reverse_node_id << ", w: " <<
            // phantom_node_pair.target_phantom.GetReverseWeightPlusOffset();
            reverse_heap1.Insert(phantom_node_pair.target_phantom.reverse_node_id,
                                 phantom_node_pair.target_phantom.GetReverseWeightPlusOffset(),
                                 phantom_node_pair.target_phantom.reverse_node_id);
        }

        // search from s and t till new_min/(1+epsilon) > length_of_shortest_path
        while (0 < (forward_heap1.Size() + reverse_heap1.Size()))
        {
            if (0 < forward_heap1.Size())
            {
                AlternativeRoutingStep<true>(forward_heap1, reverse_heap1, &middle_node,
                                             &upper_bound_to_shortest_path_distance,
                                             via_node_candidate_list, forward_search_space,
                                             min_edge_offset);
            }
            if (0 < reverse_heap1.Size())
            {
                AlternativeRoutingStep<false>(forward_heap1, reverse_heap1, &middle_node,
                                              &upper_bound_to_shortest_path_distance,
                                              via_node_candidate_list, reverse_search_space,
                                              min_edge_offset);
            }
        }

        if (INVALID_EDGE_WEIGHT == upper_bound_to_shortest_path_distance)
        {
            return;
        }

        std::sort(begin(via_node_candidate_list), end(via_node_candidate_list));
        auto unique_end = std::unique(begin(via_node_candidate_list), end(via_node_candidate_list));
        via_node_candidate_list.resize(unique_end - begin(via_node_candidate_list));

        std::vector<NodeID> packed_forward_path;
        std::vector<NodeID> packed_reverse_path;

        const bool path_is_a_loop =
            upper_bound_to_shortest_path_distance !=
            forward_heap1.GetKey(middle_node) + reverse_heap1.GetKey(middle_node);
        if (path_is_a_loop)
        {
            // Self Loop
            BOOST_ASSERT(forward_heap1.GetData(middle_node).parent == middle_node &&
                         reverse_heap1.GetData(middle_node).parent == middle_node);
            packed_forward_path.push_back(middle_node);
            packed_forward_path.push_back(middle_node);
        }
        else
        {

            super::RetrievePackedPathFromSingleHeap(forward_heap1, middle_node,
                                                    packed_forward_path);
            super::RetrievePackedPathFromSingleHeap(reverse_heap1, middle_node,
                                                    packed_reverse_path);
        }

        // this set is is used as an indicator if a node is on the shortest path
        std::unordered_set<NodeID> nodes_in_path(packed_forward_path.size() +
                                                 packed_reverse_path.size());
        nodes_in_path.insert(packed_forward_path.begin(), packed_forward_path.end());
        nodes_in_path.insert(middle_node);
        nodes_in_path.insert(packed_reverse_path.begin(), packed_reverse_path.end());

        std::unordered_map<NodeID, int> approximated_forward_sharing;
        std::unordered_map<NodeID, int> approximated_reverse_sharing;

        // sweep over search space, compute forward sharing for each current edge (u,v)
        for (const SearchSpaceEdge &current_edge : forward_search_space)
        {
            const NodeID u = current_edge.first;
            const NodeID v = current_edge.second;

            if (nodes_in_path.find(v) != nodes_in_path.end())
            {
                // current_edge is on shortest path => sharing(v):=queue.GetKey(v);
                approximated_forward_sharing.emplace(v, forward_heap1.GetKey(v));
            }
            else
            {
                // current edge is not on shortest path. Check if we know a value for the other
                // endpoint
                const auto sharing_of_u_iterator = approximated_forward_sharing.find(u);
                if (sharing_of_u_iterator != approximated_forward_sharing.end())
                {
                    approximated_forward_sharing.emplace(v, sharing_of_u_iterator->second);
                }
            }
        }

        // sweep over search space, compute backward sharing
        for (const SearchSpaceEdge &current_edge : reverse_search_space)
        {
            const NodeID u = current_edge.first;
            const NodeID v = current_edge.second;
            if (nodes_in_path.find(v) != nodes_in_path.end())
            {
                // current_edge is on shortest path => sharing(u):=queue.GetKey(u);
                approximated_reverse_sharing.emplace(v, reverse_heap1.GetKey(v));
            }
            else
            {
                // current edge is not on shortest path. Check if we know a value for the other
                // endpoint
                const auto sharing_of_u_iterator = approximated_reverse_sharing.find(u);
                if (sharing_of_u_iterator != approximated_reverse_sharing.end())
                {
                    approximated_reverse_sharing.emplace(v, sharing_of_u_iterator->second);
                }
            }
        }

        // util::SimpleLogger().Write(logDEBUG) << "fwd_search_space size: " <<
        // forward_search_space.size() << ", marked " << approximated_forward_sharing.size() << "
        // nodes";
        // util::SimpleLogger().Write(logDEBUG) << "rev_search_space size: " <<
        // reverse_search_space.size() << ", marked " << approximated_reverse_sharing.size() << "
        // nodes";

        std::vector<NodeID> preselected_node_list;
        for (const NodeID node : via_node_candidate_list)
        {
            if (node == middle_node)
                continue;
            const auto fwd_iterator = approximated_forward_sharing.find(node);
            const int fwd_sharing =
                (fwd_iterator != approximated_forward_sharing.end()) ? fwd_iterator->second : 0;
            const auto rev_iterator = approximated_reverse_sharing.find(node);
            const int rev_sharing =
                (rev_iterator != approximated_reverse_sharing.end()) ? rev_iterator->second : 0;

            const int approximated_sharing = fwd_sharing + rev_sharing;
            const int approximated_length = forward_heap1.GetKey(node) + reverse_heap1.GetKey(node);
            const bool length_passes =
                (approximated_length <
                 upper_bound_to_shortest_path_distance * (1 + VIAPATH_EPSILON));
            const bool sharing_passes =
                (approximated_sharing <= upper_bound_to_shortest_path_distance * VIAPATH_GAMMA);
            const bool stretch_passes =
                (approximated_length - approximated_sharing) <
                ((1. + VIAPATH_ALPHA) *
                 (upper_bound_to_shortest_path_distance - approximated_sharing));

            if (length_passes && sharing_passes && stretch_passes)
            {
                preselected_node_list.emplace_back(node);
            }
        }

        std::vector<NodeID> &packed_shortest_path = packed_forward_path;
        if (!path_is_a_loop)
        {
            std::reverse(packed_shortest_path.begin(), packed_shortest_path.end());
            packed_shortest_path.emplace_back(middle_node);
            packed_shortest_path.insert(packed_shortest_path.end(), packed_reverse_path.begin(),
                                        packed_reverse_path.end());
        }
        std::vector<RankedCandidateNode> ranked_candidates_list;

        // prioritizing via nodes for deep inspection
        for (const NodeID node : preselected_node_list)
        {
            int length_of_via_path = 0, sharing_of_via_path = 0;
            ComputeLengthAndSharingOfViaPath(node, &length_of_via_path, &sharing_of_via_path,
                                             packed_shortest_path, min_edge_offset);
            const int maximum_allowed_sharing =
                static_cast<int>(upper_bound_to_shortest_path_distance * VIAPATH_GAMMA);
            if (sharing_of_via_path <= maximum_allowed_sharing &&
                length_of_via_path <= upper_bound_to_shortest_path_distance * (1 + VIAPATH_EPSILON))
            {
                ranked_candidates_list.emplace_back(node, length_of_via_path, sharing_of_via_path);
            }
        }
        std::sort(ranked_candidates_list.begin(), ranked_candidates_list.end());

        NodeID selected_via_node = SPECIAL_NODEID;
        int length_of_via_path = INVALID_EDGE_WEIGHT;
        NodeID s_v_middle = SPECIAL_NODEID, v_t_middle = SPECIAL_NODEID;
        for (const RankedCandidateNode &candidate : ranked_candidates_list)
        {
            if (ViaNodeCandidatePassesTTest(
                    forward_heap1, reverse_heap1, forward_heap2, reverse_heap2, candidate,
                    upper_bound_to_shortest_path_distance, &length_of_via_path, &s_v_middle,
                    &v_t_middle, min_edge_offset))
            {
                // select first admissable
                selected_via_node = candidate.node;
                break;
            }
        }

        // Unpack shortest path and alternative, if they exist
        if (INVALID_EDGE_WEIGHT != upper_bound_to_shortest_path_distance)
        {
            BOOST_ASSERT(!packed_shortest_path.empty());
            raw_route_data.unpacked_path_segments.resize(1);
            raw_route_data.source_traversed_in_reverse.push_back(
                (packed_shortest_path.front() != phantom_node_pair.source_phantom.forward_node_id));
            raw_route_data.target_traversed_in_reverse.push_back(
                (packed_shortest_path.back() != phantom_node_pair.target_phantom.forward_node_id));

            super::UnpackPath(
                // -- packed input
                packed_shortest_path.begin(), packed_shortest_path.end(),
                // -- start of route
                phantom_node_pair,
                // -- unpacked output
                raw_route_data.unpacked_path_segments.front());
            raw_route_data.shortest_path_length = upper_bound_to_shortest_path_distance;
        }

        if (SPECIAL_NODEID != selected_via_node)
        {
            std::vector<NodeID> packed_alternate_path;
            // retrieve alternate path
            RetrievePackedAlternatePath(forward_heap1, reverse_heap1, forward_heap2, reverse_heap2,
                                        s_v_middle, v_t_middle, packed_alternate_path);

            raw_route_data.alt_source_traversed_in_reverse.push_back((
                packed_alternate_path.front() != phantom_node_pair.source_phantom.forward_node_id));
            raw_route_data.alt_target_traversed_in_reverse.push_back(
                (packed_alternate_path.back() != phantom_node_pair.target_phantom.forward_node_id));

            // unpack the alternate path
            super::UnpackPath(packed_alternate_path.begin(), packed_alternate_path.end(),
                              phantom_node_pair, raw_route_data.unpacked_alternative);

            raw_route_data.alternative_path_length = length_of_via_path;
        }
        else
        {
            BOOST_ASSERT(raw_route_data.alternative_path_length == INVALID_EDGE_WEIGHT);
        }
    }

  private:
    // unpack alternate <s,..,v,..,t> by exploring search spaces from v
    void RetrievePackedAlternatePath(const QueryHeap &forward_heap1,
                                     const QueryHeap &reverse_heap1,
                                     const QueryHeap &forward_heap2,
                                     const QueryHeap &reverse_heap2,
                                     const NodeID s_v_middle,
                                     const NodeID v_t_middle,
                                     std::vector<NodeID> &packed_path) const
    {
        // fetch packed path [s,v)
        std::vector<NodeID> packed_v_t_path;
        super::RetrievePackedPathFromHeap(forward_heap1, reverse_heap2, s_v_middle, packed_path);
        packed_path.pop_back(); // remove middle node. It's in both half-paths

        // fetch patched path [v,t]
        super::RetrievePackedPathFromHeap(forward_heap2, reverse_heap1, v_t_middle,
                                          packed_v_t_path);

        packed_path.insert(packed_path.end(), packed_v_t_path.begin(), packed_v_t_path.end());
    }

    // TODO: reorder parameters
    // compute and unpack <s,..,v> and <v,..,t> by exploring search spaces
    // from v and intersecting against queues. only half-searches have to be
    // done at this stage
    void ComputeLengthAndSharingOfViaPath(const NodeID via_node,
                                          int *real_length_of_via_path,
                                          int *sharing_of_via_path,
                                          const std::vector<NodeID> &packed_shortest_path,
                                          const EdgeWeight min_edge_offset)
    {
        engine_working_data.InitializeOrClearSecondThreadLocalStorage(
            super::facade->GetNumberOfNodes());

        QueryHeap &existing_forward_heap = *engine_working_data.forward_heap_1;
        QueryHeap &existing_reverse_heap = *engine_working_data.reverse_heap_1;
        QueryHeap &new_forward_heap = *engine_working_data.forward_heap_2;
        QueryHeap &new_reverse_heap = *engine_working_data.reverse_heap_2;

        std::vector<NodeID> packed_s_v_path;
        std::vector<NodeID> packed_v_t_path;

        std::vector<NodeID> partially_unpacked_shortest_path;
        std::vector<NodeID> partially_unpacked_via_path;

        NodeID s_v_middle = SPECIAL_NODEID;
        int upper_bound_s_v_path_length = INVALID_EDGE_WEIGHT;
        new_reverse_heap.Insert(via_node, 0, via_node);
        // compute path <s,..,v> by reusing forward search from s
        const bool constexpr STALLING_ENABLED = true;
        const bool constexpr DO_NOT_FORCE_LOOPS = false;
        while (!new_reverse_heap.Empty())
        {
            super::RoutingStep(new_reverse_heap, existing_forward_heap, s_v_middle,
                               upper_bound_s_v_path_length, min_edge_offset, false,
                               STALLING_ENABLED, DO_NOT_FORCE_LOOPS, DO_NOT_FORCE_LOOPS);
        }
        // compute path <v,..,t> by reusing backward search from node t
        NodeID v_t_middle = SPECIAL_NODEID;
        int upper_bound_of_v_t_path_length = INVALID_EDGE_WEIGHT;
        new_forward_heap.Insert(via_node, 0, via_node);
        while (!new_forward_heap.Empty())
        {
            super::RoutingStep(new_forward_heap, existing_reverse_heap, v_t_middle,
                               upper_bound_of_v_t_path_length, min_edge_offset, true,
                               STALLING_ENABLED, DO_NOT_FORCE_LOOPS, DO_NOT_FORCE_LOOPS);
        }
        *real_length_of_via_path = upper_bound_s_v_path_length + upper_bound_of_v_t_path_length;

        if (SPECIAL_NODEID == s_v_middle || SPECIAL_NODEID == v_t_middle)
        {
            return;
        }

        // retrieve packed paths
        super::RetrievePackedPathFromHeap(existing_forward_heap, new_reverse_heap, s_v_middle,
                                          packed_s_v_path);
        super::RetrievePackedPathFromHeap(new_forward_heap, existing_reverse_heap, v_t_middle,
                                          packed_v_t_path);

        // partial unpacking, compute sharing
        // First partially unpack s-->v until paths deviate, note length of common path.
        const int64_t s_v_min_path_size =
            static_cast<int64_t>(std::min(packed_s_v_path.size(), packed_shortest_path.size())) - 1;
        for (const int64_t current_node : util::irange<int64_t>(0, s_v_min_path_size))
        {
            if (packed_s_v_path[current_node] == packed_shortest_path[current_node] &&
                packed_s_v_path[current_node + 1] == packed_shortest_path[current_node + 1])
            {
                EdgeID edgeID = facade->FindEdgeInEitherDirection(
                    packed_s_v_path[current_node], packed_s_v_path[current_node + 1]);
                *sharing_of_via_path += facade->GetEdgeData(edgeID).distance;
            }
            else
            {
                if (packed_s_v_path[current_node] == packed_shortest_path[current_node])
                {
                    super::UnpackEdge(packed_s_v_path[current_node],
                                      packed_s_v_path[current_node + 1],
                                      partially_unpacked_via_path);
                    super::UnpackEdge(packed_shortest_path[current_node],
                                      packed_shortest_path[current_node + 1],
                                      partially_unpacked_shortest_path);
                    break;
                }
            }
        }
        // traverse partially unpacked edge and note common prefix
        const int64_t packed_path_length =
            static_cast<int64_t>(std::min(partially_unpacked_via_path.size(),
                                          partially_unpacked_shortest_path.size())) -
            1;
        for (int64_t current_node = 0; (current_node < packed_path_length) &&
                                       (partially_unpacked_via_path[current_node] ==
                                            partially_unpacked_shortest_path[current_node] &&
                                        partially_unpacked_via_path[current_node + 1] ==
                                            partially_unpacked_shortest_path[current_node + 1]);
             ++current_node)
        {
            EdgeID selected_edge =
                facade->FindEdgeInEitherDirection(partially_unpacked_via_path[current_node],
                                                  partially_unpacked_via_path[current_node + 1]);
            *sharing_of_via_path += facade->GetEdgeData(selected_edge).distance;
        }

        // Second, partially unpack v-->t in reverse order until paths deviate and note lengths
        int64_t via_path_index = static_cast<int64_t>(packed_v_t_path.size()) - 1;
        int64_t shortest_path_index = static_cast<int64_t>(packed_shortest_path.size()) - 1;
        for (; via_path_index > 0 && shortest_path_index > 0;
             --via_path_index, --shortest_path_index)
        {
            if (packed_v_t_path[via_path_index - 1] ==
                    packed_shortest_path[shortest_path_index - 1] &&
                packed_v_t_path[via_path_index] == packed_shortest_path[shortest_path_index])
            {
                EdgeID edgeID = facade->FindEdgeInEitherDirection(
                    packed_v_t_path[via_path_index - 1], packed_v_t_path[via_path_index]);
                *sharing_of_via_path += facade->GetEdgeData(edgeID).distance;
            }
            else
            {
                if (packed_v_t_path[via_path_index] == packed_shortest_path[shortest_path_index])
                {
                    super::UnpackEdge(packed_v_t_path[via_path_index - 1],
                                      packed_v_t_path[via_path_index], partially_unpacked_via_path);
                    super::UnpackEdge(packed_shortest_path[shortest_path_index - 1],
                                      packed_shortest_path[shortest_path_index],
                                      partially_unpacked_shortest_path);
                    break;
                }
            }
        }

        via_path_index = partially_unpacked_via_path.size() - 1;
        shortest_path_index = partially_unpacked_shortest_path.size() - 1;
        for (; via_path_index > 0 && shortest_path_index > 0;
             --via_path_index, --shortest_path_index)
        {
            if (partially_unpacked_via_path[via_path_index - 1] ==
                    partially_unpacked_shortest_path[shortest_path_index - 1] &&
                partially_unpacked_via_path[via_path_index] ==
                    partially_unpacked_shortest_path[shortest_path_index])
            {
                EdgeID edgeID = facade->FindEdgeInEitherDirection(
                    partially_unpacked_via_path[via_path_index - 1],
                    partially_unpacked_via_path[via_path_index]);
                *sharing_of_via_path += facade->GetEdgeData(edgeID).distance;
            }
            else
            {
                break;
            }
        }
        // finished partial unpacking spree! Amount of sharing is stored to appropriate pointer
        // variable
    }

    // int approximateAmountOfSharing(
    //     const NodeID alternate_path_middle_node_id,
    //     QueryHeap & forward_heap,
    //     QueryHeap & reverse_heap,
    //     const std::vector<NodeID> & packed_shortest_path
    // ) const {
    //     std::vector<NodeID> packed_alternate_path;
    //     super::RetrievePackedPathFromHeap(
    //         forward_heap,
    //         reverse_heap,
    //         alternate_path_middle_node_id,
    //         packed_alternate_path
    //     );

    //     if(packed_shortest_path.size() < 2 || packed_alternate_path.size() < 2) {
    //         return 0;
    //     }

    //     int sharing = 0;
    //     int aindex = 0;
    //     //compute forward sharing
    //     while( (packed_alternate_path[aindex] == packed_shortest_path[aindex]) &&
    //     (packed_alternate_path[aindex+1] == packed_shortest_path[aindex+1]) ) {
    //         //            util::SimpleLogger().Write() << "retrieving edge (" <<
    //         packed_alternate_path[aindex] << "," << packed_alternate_path[aindex+1] << ")";
    //         EdgeID edgeID = facade->FindEdgeInEitherDirection(packed_alternate_path[aindex],
    //         packed_alternate_path[aindex+1]);
    //         sharing += facade->GetEdgeData(edgeID).distance;
    //         ++aindex;
    //     }

    //     aindex = packed_alternate_path.size()-1;
    //     int bindex = packed_shortest_path.size()-1;
    //     //compute backward sharing
    //     while( aindex > 0 && bindex > 0 && (packed_alternate_path[aindex] ==
    //     packed_shortest_path[bindex]) && (packed_alternate_path[aindex-1] ==
    //     packed_shortest_path[bindex-1]) ) {
    //         EdgeID edgeID = facade->FindEdgeInEitherDirection(packed_alternate_path[aindex],
    //         packed_alternate_path[aindex-1]);
    //         sharing += facade->GetEdgeData(edgeID).distance;
    //         --aindex; --bindex;
    //     }
    //     return sharing;
    // }

    // todo: reorder parameters
    template <bool is_forward_directed>
    void AlternativeRoutingStep(QueryHeap &heap1,
                                QueryHeap &heap2,
                                NodeID *middle_node,
                                int *upper_bound_to_shortest_path_distance,
                                std::vector<NodeID> &search_space_intersection,
                                std::vector<SearchSpaceEdge> &search_space,
                                const EdgeWeight min_edge_offset) const
    {
        QueryHeap &forward_heap = (is_forward_directed ? heap1 : heap2);
        QueryHeap &reverse_heap = (is_forward_directed ? heap2 : heap1);

        const NodeID node = forward_heap.DeleteMin();
        const int distance = forward_heap.GetKey(node);
        // const NodeID parentnode = forward_heap.GetData(node).parent;
        // util::SimpleLogger().Write() << (is_forward_directed ? "[fwd] " : "[rev] ") << "settled
        // edge ("
        // << parentnode << "," << node << "), dist: " << distance;

        const int scaled_distance =
            static_cast<int>((distance + min_edge_offset) / (1. + VIAPATH_EPSILON));
        if ((INVALID_EDGE_WEIGHT != *upper_bound_to_shortest_path_distance) &&
            (scaled_distance > *upper_bound_to_shortest_path_distance))
        {
            forward_heap.DeleteAll();
            return;
        }

        search_space.emplace_back(forward_heap.GetData(node).parent, node);

        if (reverse_heap.WasInserted(node))
        {
            search_space_intersection.emplace_back(node);
            const int new_distance = reverse_heap.GetKey(node) + distance;
            if (new_distance < *upper_bound_to_shortest_path_distance)
            {
                if (new_distance >= 0)
                {
                    *middle_node = node;
                    *upper_bound_to_shortest_path_distance = new_distance;
                    //     util::SimpleLogger().Write() << "accepted middle_node " << *middle_node
                    //     << " at
                    //     distance " << new_distance;
                    // } else {
                    //     util::SimpleLogger().Write() << "discarded middle_node " << *middle_node
                    //     << "
                    //     at distance " << new_distance;
                }
                else
                {
                    // check whether there is a loop present at the node
                    const auto loop_distance = super::GetLoopWeight(node);
                    const int new_distance_with_loop = new_distance + loop_distance;
                    if (loop_distance != INVALID_EDGE_WEIGHT &&
                        new_distance_with_loop <= *upper_bound_to_shortest_path_distance)
                    {
                        *middle_node = node;
                        *upper_bound_to_shortest_path_distance = loop_distance;
                    }
                }
            }
        }

        for (auto edge : facade->GetAdjacentEdgeRange(node))
        {
            const EdgeData &data = facade->GetEdgeData(edge);
            const bool edge_is_forward_directed =
                (is_forward_directed ? data.forward : data.backward);
            if (edge_is_forward_directed)
            {

                const NodeID to = facade->GetTarget(edge);
                const int edge_weight = data.distance;

                BOOST_ASSERT(edge_weight > 0);
                const int to_distance = distance + edge_weight;

                // New Node discovered -> Add to Heap + Node Info Storage
                if (!forward_heap.WasInserted(to))
                {
                    forward_heap.Insert(to, to_distance, node);
                }
                // Found a shorter Path -> Update distance
                else if (to_distance < forward_heap.GetKey(to))
                {
                    // new parent
                    forward_heap.GetData(to).parent = node;
                    // decreased distance
                    forward_heap.DecreaseKey(to, to_distance);
                }
            }
        }
    }

    // conduct T-Test
    bool ViaNodeCandidatePassesTTest(QueryHeap &existing_forward_heap,
                                     QueryHeap &existing_reverse_heap,
                                     QueryHeap &new_forward_heap,
                                     QueryHeap &new_reverse_heap,
                                     const RankedCandidateNode &candidate,
                                     const int length_of_shortest_path,
                                     int *length_of_via_path,
                                     NodeID *s_v_middle,
                                     NodeID *v_t_middle,
                                     const EdgeWeight min_edge_offset) const
    {
        new_forward_heap.Clear();
        new_reverse_heap.Clear();
        std::vector<NodeID> packed_s_v_path;
        std::vector<NodeID> packed_v_t_path;

        *s_v_middle = SPECIAL_NODEID;
        int upper_bound_s_v_path_length = INVALID_EDGE_WEIGHT;
        // compute path <s,..,v> by reusing forward search from s
        new_reverse_heap.Insert(candidate.node, 0, candidate.node);
        const bool constexpr STALLING_ENABLED = true;
        const bool constexpr DO_NOT_FORCE_LOOPS = false;
        while (new_reverse_heap.Size() > 0)
        {
            super::RoutingStep(new_reverse_heap, existing_forward_heap, *s_v_middle,
                               upper_bound_s_v_path_length, min_edge_offset, false,
                               STALLING_ENABLED, DO_NOT_FORCE_LOOPS, DO_NOT_FORCE_LOOPS);
        }

        if (INVALID_EDGE_WEIGHT == upper_bound_s_v_path_length)
        {
            return false;
        }

        // compute path <v,..,t> by reusing backward search from t
        *v_t_middle = SPECIAL_NODEID;
        int upper_bound_of_v_t_path_length = INVALID_EDGE_WEIGHT;
        new_forward_heap.Insert(candidate.node, 0, candidate.node);
        while (new_forward_heap.Size() > 0)
        {
            super::RoutingStep(new_forward_heap, existing_reverse_heap, *v_t_middle,
                               upper_bound_of_v_t_path_length, min_edge_offset, true,
                               STALLING_ENABLED, DO_NOT_FORCE_LOOPS, DO_NOT_FORCE_LOOPS);
        }

        if (INVALID_EDGE_WEIGHT == upper_bound_of_v_t_path_length)
        {
            return false;
        }

        *length_of_via_path = upper_bound_s_v_path_length + upper_bound_of_v_t_path_length;

        // retrieve packed paths
        super::RetrievePackedPathFromHeap(existing_forward_heap, new_reverse_heap, *s_v_middle,
                                          packed_s_v_path);

        super::RetrievePackedPathFromHeap(new_forward_heap, existing_reverse_heap, *v_t_middle,
                                          packed_v_t_path);

        NodeID s_P = *s_v_middle, t_P = *v_t_middle;
        if (SPECIAL_NODEID == s_P)
        {
            return false;
        }

        if (SPECIAL_NODEID == t_P)
        {
            return false;
        }
        const int T_threshold = static_cast<int>(VIAPATH_EPSILON * length_of_shortest_path);
        int unpacked_until_distance = 0;

        std::stack<SearchSpaceEdge> unpack_stack;
        // Traverse path s-->v
        for (std::size_t i = packed_s_v_path.size() - 1; (i > 0) && unpack_stack.empty(); --i)
        {
            const EdgeID current_edge_id =
                facade->FindEdgeInEitherDirection(packed_s_v_path[i - 1], packed_s_v_path[i]);
            const int length_of_current_edge = facade->GetEdgeData(current_edge_id).distance;
            if ((length_of_current_edge + unpacked_until_distance) >= T_threshold)
            {
                unpack_stack.emplace(packed_s_v_path[i - 1], packed_s_v_path[i]);
            }
            else
            {
                unpacked_until_distance += length_of_current_edge;
                s_P = packed_s_v_path[i - 1];
            }
        }

        while (!unpack_stack.empty())
        {
            const SearchSpaceEdge via_path_edge = unpack_stack.top();
            unpack_stack.pop();
            EdgeID edge_in_via_path_id =
                facade->FindEdgeInEitherDirection(via_path_edge.first, via_path_edge.second);

            if (SPECIAL_EDGEID == edge_in_via_path_id)
            {
                return false;
            }

            const EdgeData &current_edge_data = facade->GetEdgeData(edge_in_via_path_id);
            const bool current_edge_is_shortcut = current_edge_data.shortcut;
            if (current_edge_is_shortcut)
            {
                const NodeID via_path_middle_node_id = current_edge_data.id;
                const EdgeID second_segment_edge_id = facade->FindEdgeInEitherDirection(
                    via_path_middle_node_id, via_path_edge.second);
                const int second_segment_length =
                    facade->GetEdgeData(second_segment_edge_id).distance;
                // attention: !unpacking in reverse!
                // Check if second segment is the one to go over treshold? if yes add second segment
                // to stack, else push first segment to stack and add distance of second one.
                if (unpacked_until_distance + second_segment_length >= T_threshold)
                {
                    unpack_stack.emplace(via_path_middle_node_id, via_path_edge.second);
                }
                else
                {
                    unpacked_until_distance += second_segment_length;
                    unpack_stack.emplace(via_path_edge.first, via_path_middle_node_id);
                }
            }
            else
            {
                // edge is not a shortcut, set the start node for T-Test to end of edge.
                unpacked_until_distance += current_edge_data.distance;
                s_P = via_path_edge.first;
            }
        }

        int t_test_path_length = unpacked_until_distance;
        unpacked_until_distance = 0;
        // Traverse path s-->v
        BOOST_ASSERT(!packed_v_t_path.empty());
        for (unsigned i = 0, packed_path_length = static_cast<unsigned>(packed_v_t_path.size() - 1);
             (i < packed_path_length) && unpack_stack.empty(); ++i)
        {
            const EdgeID edgeID =
                facade->FindEdgeInEitherDirection(packed_v_t_path[i], packed_v_t_path[i + 1]);
            int length_of_current_edge = facade->GetEdgeData(edgeID).distance;
            if (length_of_current_edge + unpacked_until_distance >= T_threshold)
            {
                unpack_stack.emplace(packed_v_t_path[i], packed_v_t_path[i + 1]);
            }
            else
            {
                unpacked_until_distance += length_of_current_edge;
                t_P = packed_v_t_path[i + 1];
            }
        }

        while (!unpack_stack.empty())
        {
            const SearchSpaceEdge via_path_edge = unpack_stack.top();
            unpack_stack.pop();
            EdgeID edge_in_via_path_id =
                facade->FindEdgeInEitherDirection(via_path_edge.first, via_path_edge.second);
            if (SPECIAL_EDGEID == edge_in_via_path_id)
            {
                return false;
            }

            const EdgeData &current_edge_data = facade->GetEdgeData(edge_in_via_path_id);
            const bool IsViaEdgeShortCut = current_edge_data.shortcut;
            if (IsViaEdgeShortCut)
            {
                const NodeID middleOfViaPath = current_edge_data.id;
                EdgeID edgeIDOfFirstSegment =
                    facade->FindEdgeInEitherDirection(via_path_edge.first, middleOfViaPath);
                int lengthOfFirstSegment = facade->GetEdgeData(edgeIDOfFirstSegment).distance;
                // Check if first segment is the one to go over treshold? if yes first segment to
                // stack, else push second segment to stack and add distance of first one.
                if (unpacked_until_distance + lengthOfFirstSegment >= T_threshold)
                {
                    unpack_stack.emplace(via_path_edge.first, middleOfViaPath);
                }
                else
                {
                    unpacked_until_distance += lengthOfFirstSegment;
                    unpack_stack.emplace(middleOfViaPath, via_path_edge.second);
                }
            }
            else
            {
                // edge is not a shortcut, set the start node for T-Test to end of edge.
                unpacked_until_distance += current_edge_data.distance;
                t_P = via_path_edge.second;
            }
        }

        t_test_path_length += unpacked_until_distance;
        // Run actual T-Test query and compare if distances equal.
        engine_working_data.InitializeOrClearThirdThreadLocalStorage(
            super::facade->GetNumberOfNodes());

        QueryHeap &forward_heap3 = *engine_working_data.forward_heap_3;
        QueryHeap &reverse_heap3 = *engine_working_data.reverse_heap_3;
        int upper_bound = INVALID_EDGE_WEIGHT;
        NodeID middle = SPECIAL_NODEID;

        forward_heap3.Insert(s_P, 0, s_P);
        reverse_heap3.Insert(t_P, 0, t_P);
        // exploration from s and t until deletemin/(1+epsilon) > _lengt_oO_sShortest_path
        while ((forward_heap3.Size() + reverse_heap3.Size()) > 0)
        {
            if (!forward_heap3.Empty())
            {
                super::RoutingStep(forward_heap3, reverse_heap3, middle, upper_bound,
                                   min_edge_offset, true, STALLING_ENABLED, DO_NOT_FORCE_LOOPS,
                                   DO_NOT_FORCE_LOOPS);
            }
            if (!reverse_heap3.Empty())
            {
                super::RoutingStep(reverse_heap3, forward_heap3, middle, upper_bound,
                                   min_edge_offset, false, STALLING_ENABLED, DO_NOT_FORCE_LOOPS,
                                   DO_NOT_FORCE_LOOPS);
            }
        }
        return (upper_bound <= t_test_path_length);
    }
};
}
}
}

#endif /* ALTERNATIVE_PATH_ROUTING_HPP */