/* open source routing machine Copyright (C) Dennis Luxen, others 2010 This program is free software; you can redistribute it and/or modify it under the terms of the GNU AFFERO General Public License as published by the Free Software Foundation; either version 3 of the License, or any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU Affero General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA or see http://www.gnu.org/licenses/agpl.txt. */ #include #include #include #include #include #include #include #include #include "typedefs.h" using namespace std; struct _Node : NodeInfo{ bool trafficSignal:1; }; struct _Way { std::vector< NodeID > path; enum { notSure = 0, oneway, bidirectional, opposite } direction; double maximumSpeed; bool usefull:1; bool access:1; short type; }; typedef google::dense_hash_map NodeMap; struct _Stats { NodeID numberOfNodes; NodeID numberOfEdges; NodeID numberOfWays; // NodeID numberOfPlaces; // NodeID numberOfOutlines; NodeID numberOfMaxspeed; // NodeID numberOfZeroSpeed; // NodeID numberOfDefaultCitySpeed; // NodeID numberOfCityEdges; }; struct Settings { struct SpeedProfile { vector< double > speed; vector< string > names; } speedProfile; vector accessList; int trafficLightPenalty; int indexInAccessListOf( const string & key) { for(int i = 0; i< accessList.size(); i++) { if(accessList[i] == key) return i; } return -1; } }; _Way _ReadXMLWay( xmlTextReaderPtr& inputReader ); _Node _ReadXMLNode( xmlTextReaderPtr& inputReader ); double ApproximateDistance( const int lat1, const int lon1, const int lat2, const int lon2 ); _Stats stats; Settings settings; NodeMap AllNodes; vector SignalNodes; vector UsedNodes; vector<_Way> UsedWays; int main (int argc, char *argv[]) { if(argc <= 1) { cerr << "usage: " << endl << argv[0] << " " << endl; exit(-1); } cout << "reading input file. This may take some time ..." << flush; /* Default Speed Profile: motorway 120 motorway_link 80 trunk 100 trunk_link 80 secondary 100 secondary_link 50 primary 100 primary_link 50 tertiary 100 unclassified 50 residential 50 living_street 30 service 20 */ string names[13] = { "motorway", "motorway_link", "trunk", "trunk_link", "secondary", "secondary_link", "primary", "primary_link", "tertiary", "unclassified", "residential", "living_street", "service" }; double speeds[13] = { 120, 80, 100, 80, 100, 50, 100, 50, 100, 50, 50 , 30, 20}; settings.speedProfile.names.insert(settings.speedProfile.names.begin(), names, names+13); settings.speedProfile.speed.insert(settings.speedProfile.speed.begin(), speeds, speeds+13); AllNodes.set_empty_key(UINT_MAX); xmlTextReaderPtr inputReader = xmlNewTextReaderFilename( argv[1] ); ofstream nodeFile("_nodes", ios::binary); ofstream wayFile("_ways", ios::binary); try { while ( xmlTextReaderRead( inputReader ) == 1 ) { const int type = xmlTextReaderNodeType( inputReader ); //1 is Element if ( type != 1 ) continue; xmlChar* currentName = xmlTextReaderName( inputReader ); if ( currentName == NULL ) continue; if ( xmlStrEqual( currentName, ( const xmlChar* ) "node" ) == 1 ) { stats.numberOfNodes++; _Node node = _ReadXMLNode( inputReader ); AllNodes.insert(make_pair(node.id, node) ); if ( node.trafficSignal ) SignalNodes.push_back( node.id ); } else if ( xmlStrEqual( currentName, ( const xmlChar* ) "way" ) == 1 ) { stats.numberOfWays++; _Way way = _ReadXMLWay( inputReader ); if ( way.usefull && way.access && way.path.size() ) { for ( unsigned i = 0; i < way.path.size(); ++i ) { UsedNodes.push_back( way.path[i] ); } if ( way.direction == _Way::opposite ) std::reverse( way.path.begin(), way.path.end() ); stats.numberOfEdges += ( int ) way.path.size() - 1; UsedWays.push_back(way); } } xmlFree( currentName ); } sort(UsedNodes.begin(), UsedNodes.end()); UsedNodes.erase(unique(UsedNodes.begin(), UsedNodes.end()), UsedNodes.end() ); sort(SignalNodes.begin(), SignalNodes.end()); SignalNodes.erase(unique(SignalNodes.begin(), SignalNodes.end()), SignalNodes.end() ); cout << "ok" << endl; cout << endl << "Statistics: " << endl; cout << "All Nodes: " << stats.numberOfNodes << endl; cout << "Used Nodes: " << UsedNodes.size() << endl; cout << "Number of Ways: " << stats.numberOfWays << endl; cout << "Edges in graph: " << stats.numberOfEdges << endl; cout << "Number of ways with maxspeed information: " << stats.numberOfMaxspeed << endl; cout << "Number of nodes with traffic lights: " << SignalNodes.size() << endl; cout << "finished loading data" << endl; cout << "calculated edge weights and writing to disk ..." << flush; string name(argv[1]); int pos=name.find(".osm"); // pos=9 if(pos!=string::npos) { //replace name.replace(pos, 5, ".osrm"); } else { name.append(".osrm"); } ofstream fout; fout.open(name.c_str()); fout << UsedNodes.size() << endl; for(vector::size_type i = 0; i < UsedNodes.size(); i++) { NodeMap::iterator it = AllNodes.find(UsedNodes[i]); assert(it!=AllNodes.end()); fout << UsedNodes[i] << " " << it->second.lon << " " << it->second.lat << "\n" << flush; } UsedNodes.clear(); fout << stats.numberOfEdges << endl; for(vector<_Way>::size_type i = 0; i < UsedWays.size(); i++) { vector< NodeID > & path = UsedWays[i].path; double speed = UsedWays[i].maximumSpeed; assert(UsedWays[i].type > -1 || UsedWays[i].maximumSpeed != -1); assert(path.size()>0); for(vector< NodeID >::size_type n = 0; n < path.size()-1; n++) { //insert path[n], path[n+1] NodeMap::iterator startit = AllNodes.find(path[n]); if(startit == AllNodes.end()) { cerr << "Node " << path[n] << " missing albeit referenced in way. Edge skipped" << endl; continue; } NodeMap::iterator targetit = AllNodes.find(path[n+1]); if(targetit == AllNodes.end()) { cerr << "Node << " << path[n+1] << "missing albeit reference in a way. Edge skipped" << endl; continue; } double distance = ApproximateDistance(startit->second.lat, startit->second.lon, targetit->second.lat, targetit->second.lon); if(speed == -1) speed = settings.speedProfile.speed[UsedWays[i].type]; double weight = ( distance * 10. ) / (speed / 3.6); double intWeight = max(1, (int) weight); switch(UsedWays[i].direction) { case _Way::notSure: fout << startit->first << " " << targetit->first << " " << max(1, (int)distance) << " " << 0 << " " << intWeight << "\n"; break; case _Way::oneway: fout << startit->first << " " << targetit->first << " " << max(1, (int)distance) << " " << 1 << " " << intWeight << "\n"; break; case _Way::bidirectional: fout << startit->first << " " << targetit->first << " " << max(1, (int)distance) << " " << 0 << " " << intWeight << "\n"; break; case _Way::opposite: fout << startit->first << " " << targetit->first << " " << max(1, (int)distance) << " " << 1 << " " << intWeight << "\n"; break; default: assert(false); break; } } } fout.close(); cout << "ok" << endl; } catch ( const std::exception& e ) { cerr << "Caught Execption:" << e.what() << endl; return false; } AllNodes.clear(); SignalNodes.clear(); UsedWays.clear(); xmlFreeTextReader(inputReader); return true; } _Way _ReadXMLWay( xmlTextReaderPtr& inputReader ) { _Way way; way.direction = _Way::notSure; way.maximumSpeed = -1; way.type = -1; way.usefull = false; way.access = true; if ( xmlTextReaderIsEmptyElement( inputReader ) != 1 ) { const int depth = xmlTextReaderDepth( inputReader ); while ( xmlTextReaderRead( inputReader ) == 1 ) { const int childType = xmlTextReaderNodeType( inputReader ); if ( childType != 1 && childType != 15 ) continue; const int childDepth = xmlTextReaderDepth( inputReader ); xmlChar* childName = xmlTextReaderName( inputReader ); if ( childName == NULL ) continue; if ( depth == childDepth && childType == 15 && xmlStrEqual( childName, ( const xmlChar* ) "way" ) == 1 ) { xmlFree( childName ); break; } if ( childType != 1 ) { xmlFree( childName ); continue; } if ( xmlStrEqual( childName, ( const xmlChar* ) "tag" ) == 1 ) { xmlChar* k = xmlTextReaderGetAttribute( inputReader, ( const xmlChar* ) "k" ); xmlChar* value = xmlTextReaderGetAttribute( inputReader, ( const xmlChar* ) "v" ); if ( k != NULL && value != NULL ) { if ( xmlStrEqual( k, ( const xmlChar* ) "oneway" ) == 1 ) { if ( xmlStrEqual( value, ( const xmlChar* ) "no" ) == 1 || xmlStrEqual( value, ( const xmlChar* ) "false" ) == 1 || xmlStrEqual( value, ( const xmlChar* ) "0" ) == 1 ) way.direction = _Way::bidirectional; else if ( xmlStrEqual( value, ( const xmlChar* ) "yes" ) == 1 || xmlStrEqual( value, ( const xmlChar* ) "true" ) == 1 || xmlStrEqual( value, ( const xmlChar* ) "1" ) == 1 ) way.direction = _Way::oneway; else if ( xmlStrEqual( value, ( const xmlChar* ) "-1" ) == 1 ) way.direction = _Way::opposite; } else if ( xmlStrEqual( k, ( const xmlChar* ) "junction" ) == 1 ) { if ( xmlStrEqual( value, ( const xmlChar* ) "roundabout" ) == 1 ) { if ( way.direction == _Way::notSure ) { way.direction = _Way::oneway; } if ( way.maximumSpeed == -1 ) way.maximumSpeed = 10; way.usefull = true; } } else if ( xmlStrEqual( k, ( const xmlChar* ) "highway" ) == 1 ) { string name( ( const char* ) value ); for ( int i = 0; i < settings.speedProfile.names.size(); i++ ) { if ( name == settings.speedProfile.names[i] ) { way.type = i; way.usefull = true; break; } } if ( name == "motorway" ) { if ( way.direction == _Way::notSure ) { way.direction = _Way::oneway; } } else if ( name == "motorway_link" ) { if ( way.direction == _Way::notSure ) { way.direction = _Way::oneway; } } } else if ( xmlStrEqual( k, ( const xmlChar* ) "maxspeed" ) == 1 ) { double maxspeed = atof(( const char* ) value ); xmlChar buffer[100]; xmlStrPrintf( buffer, 100, ( const xmlChar* ) "%.lf", maxspeed ); if ( xmlStrEqual( value, buffer ) == 1 ) { way.maximumSpeed = maxspeed; stats.numberOfMaxspeed++; } else { xmlStrPrintf( buffer, 100, ( const xmlChar* ) "%.lf kmh", maxspeed ); if ( xmlStrEqual( value, buffer ) == 1 ) { way.maximumSpeed = maxspeed; stats.numberOfMaxspeed++; } else { xmlStrPrintf( buffer, 100, ( const xmlChar* ) "%.lfkmh", maxspeed ); if ( xmlStrEqual( value, buffer ) == 1 ) { way.maximumSpeed = maxspeed; stats.numberOfMaxspeed++; } else { xmlStrPrintf( buffer, 100, ( const xmlChar* ) "%.lf km/h", maxspeed ); if ( xmlStrEqual( value, buffer ) == 1 ) { way.maximumSpeed = maxspeed; stats.numberOfMaxspeed++; } else { xmlStrPrintf( buffer, 100, ( const xmlChar* ) "%.lfkm/h", maxspeed ); if ( xmlStrEqual( value, buffer ) == 1 ) { way.maximumSpeed = maxspeed; stats.numberOfMaxspeed++; } } } } } } else { // string key( ( const char* ) k ); // int index = -1;// settings.accessList.indexOf( key ); // if ( index != -1 ) { //&& index < way.accessPriority ) { if ( xmlStrEqual( value, ( const xmlChar* ) "private" ) == 1 || xmlStrEqual( value, ( const xmlChar* ) "no" ) == 1 || xmlStrEqual( value, ( const xmlChar* ) "agricultural" ) == 1 || xmlStrEqual( value, ( const xmlChar* ) "forestry" ) == 1 || xmlStrEqual( value, ( const xmlChar* ) "delivery" ) == 1 ) { way.access = false; } else if ( xmlStrEqual( value, ( const xmlChar* ) "yes" ) == 1 || xmlStrEqual( value, ( const xmlChar* ) "designated" ) == 1 || xmlStrEqual( value, ( const xmlChar* ) "official" ) == 1 || xmlStrEqual( value, ( const xmlChar* ) "permissive" ) == 1 ) { way.access = true; } // } } if ( k != NULL ) xmlFree( k ); if ( value != NULL ) xmlFree( value ); } } else if ( xmlStrEqual( childName, ( const xmlChar* ) "nd" ) == 1 ) { xmlChar* ref = xmlTextReaderGetAttribute( inputReader, ( const xmlChar* ) "ref" ); if ( ref != NULL ) { way.path.push_back( atoi(( const char* ) ref ) ); xmlFree( ref ); } } xmlFree( childName ); } } return way; } _Node _ReadXMLNode( xmlTextReaderPtr& inputReader ) { _Node node; node.trafficSignal = false; xmlChar* attribute = xmlTextReaderGetAttribute( inputReader, ( const xmlChar* ) "lat" ); if ( attribute != NULL ) { node.lat = static_cast(100000*atof(( const char* ) attribute ) ); xmlFree( attribute ); } attribute = xmlTextReaderGetAttribute( inputReader, ( const xmlChar* ) "lon" ); if ( attribute != NULL ) { node.lon = static_cast(100000*atof(( const char* ) attribute )); xmlFree( attribute ); } attribute = xmlTextReaderGetAttribute( inputReader, ( const xmlChar* ) "id" ); if ( attribute != NULL ) { node.id = atoi(( const char* ) attribute ); xmlFree( attribute ); } if ( xmlTextReaderIsEmptyElement( inputReader ) != 1 ) { const int depth = xmlTextReaderDepth( inputReader ); while ( xmlTextReaderRead( inputReader ) == 1 ) { const int childType = xmlTextReaderNodeType( inputReader ); // 1 = Element, 15 = EndElement if ( childType != 1 && childType != 15 ) continue; const int childDepth = xmlTextReaderDepth( inputReader ); xmlChar* childName = xmlTextReaderName( inputReader ); if ( childName == NULL ) continue; if ( depth == childDepth && childType == 15 && xmlStrEqual( childName, ( const xmlChar* ) "node" ) == 1 ) { xmlFree( childName ); break; } if ( childType != 1 ) { xmlFree( childName ); continue; } if ( xmlStrEqual( childName, ( const xmlChar* ) "tag" ) == 1 ) { xmlChar* k = xmlTextReaderGetAttribute( inputReader, ( const xmlChar* ) "k" ); xmlChar* value = xmlTextReaderGetAttribute( inputReader, ( const xmlChar* ) "v" ); if ( k != NULL && value != NULL ) { if ( xmlStrEqual( k, ( const xmlChar* ) "highway" ) == 1 ) { if ( xmlStrEqual( value, ( const xmlChar* ) "traffic_signals" ) == 1 ) node.trafficSignal = true; } } if ( k != NULL ) xmlFree( k ); if ( value != NULL ) xmlFree( value ); } xmlFree( childName ); } } return node; } double ApproximateDistance( const int lat1, const int lon1, const int lat2, const int lon2 ) { static const double DEG_TO_RAD = 0.017453292519943295769236907684886; ///Earth's quatratic mean radius for WGS-84 static const double EARTH_RADIUS_IN_METERS = 6372797.560856; double latitudeArc = ( lat1/100000. - lat2/100000. ) * DEG_TO_RAD; double longitudeArc = ( lon1/100000. - lon2/100000. ) * DEG_TO_RAD; double latitudeH = sin( latitudeArc * 0.5 ); latitudeH *= latitudeH; double lontitudeH = sin( longitudeArc * 0.5 ); lontitudeH *= lontitudeH; double tmp = cos( lat1/100000. * DEG_TO_RAD ) * cos( lat2/100000. * DEG_TO_RAD ); double distanceArc = 2.0 * asin( sqrt( latitudeH + tmp * lontitudeH ) ); return EARTH_RADIUS_IN_METERS * distanceArc; }