#ifndef BASE_PLUGIN_HPP #define BASE_PLUGIN_HPP #include "engine/api/base_parameters.hpp" #include "engine/api/base_result.hpp" #include "engine/api/flatbuffers/fbresult_generated.h" #include "engine/datafacade/datafacade_base.hpp" #include "engine/phantom_node.hpp" #include "engine/routing_algorithms.hpp" #include "engine/status.hpp" #include "util/coordinate.hpp" #include "util/coordinate_calculation.hpp" #include "util/integer_range.hpp" #include "util/json_container.hpp" #include #include #include #include #include namespace osrm::engine::plugins { class BasePlugin { protected: BasePlugin() = default; BasePlugin(const boost::optional default_radius_) : default_radius(default_radius_) {} bool CheckAllCoordinates(const std::vector &coordinates) const { return !std::any_of(std::begin(coordinates), std::end(coordinates), [](const util::Coordinate coordinate) { return !coordinate.IsValid(); }); } bool CheckAlgorithms(const api::BaseParameters ¶ms, const RoutingAlgorithmsInterface &algorithms, osrm::engine::api::ResultT &result) const { if (algorithms.IsValid()) { return true; } if (!algorithms.HasExcludeFlags() && !params.exclude.empty()) { Error("NotImplemented", "This algorithm does not support exclude flags.", result); return false; } if (algorithms.HasExcludeFlags() && !params.exclude.empty()) { Error("InvalidValue", "Exclude flag combination is not supported.", result); return false; } BOOST_ASSERT_MSG(false, "There are only two reasons why the algorithm interface can be invalid."); return false; } struct ErrorRenderer { std::string code; std::string message; ErrorRenderer(std::string code, std::string message) : code(std::move(code)), message(std::move(message)){}; void operator()(util::json::Object &json_result) { json_result.values["code"] = code; json_result.values["message"] = message; }; void operator()(flatbuffers::FlatBufferBuilder &fb_result) { auto error = api::fbresult::CreateErrorDirect(fb_result, code.c_str(), message.c_str()); api::fbresult::FBResultBuilder response(fb_result); response.add_error(true); response.add_code(error); fb_result.Finish(response.Finish()); }; void operator()(std::string &str_result) { str_result = str(boost::format("code=%1% message=%2%") % code % message); }; }; Status Error(const std::string &code, const std::string &message, osrm::engine::api::ResultT &result) const { std::visit(ErrorRenderer(code, message), result); return Status::Error; } // Decides whether to use the phantom candidates from big or small components if both are found. std::vector SnapPhantomNodes(std::vector alternatives_list) const { // are all phantoms from a tiny cc? const auto all_in_same_tiny_component = [](const std::vector &alts_list) { return std::any_of( alts_list.front().first.begin(), alts_list.front().first.end(), // For each of the first possible phantoms, check if all other // positions in the list have a phantom from the same small component. [&](const PhantomNode &phantom) { if (!phantom.component.is_tiny) { return false; } const auto component_id = phantom.component.id; return std::all_of( std::next(alts_list.begin()), std::end(alts_list), [component_id](const PhantomCandidateAlternatives &alternatives) { return candidatesHaveComponent(alternatives.first, component_id); }); }); }; // Move the alternative into the final list const auto fallback_to_big_component = [](PhantomCandidateAlternatives &alternatives) { auto no_big_alternative = alternatives.second.empty(); return no_big_alternative ? std::move(alternatives.first) : std::move(alternatives.second); }; // Move the alternative into the final list const auto use_closed_phantom = [](PhantomCandidateAlternatives &alternatives) { return std::move(alternatives.first); }; const auto no_alternatives = std::all_of(alternatives_list.begin(), alternatives_list.end(), [](const PhantomCandidateAlternatives &alternatives) { return alternatives.second.empty(); }); std::vector snapped_phantoms; snapped_phantoms.reserve(alternatives_list.size()); // The only case we don't snap to the big component if all phantoms are in the same small // component if (no_alternatives || all_in_same_tiny_component(alternatives_list)) { std::transform(alternatives_list.begin(), alternatives_list.end(), std::back_inserter(snapped_phantoms), use_closed_phantom); } else { std::transform(alternatives_list.begin(), alternatives_list.end(), std::back_inserter(snapped_phantoms), fallback_to_big_component); } return snapped_phantoms; } // Falls back to default_radius for non-set radii std::vector> GetPhantomNodesInRange(const datafacade::BaseDataFacade &facade, const api::BaseParameters ¶meters, const std::vector &radiuses, bool use_all_edges = false) const { std::vector> phantom_nodes( parameters.coordinates.size()); BOOST_ASSERT(radiuses.size() == parameters.coordinates.size()); const bool use_hints = !parameters.hints.empty(); const bool use_bearings = !parameters.bearings.empty(); const bool use_approaches = !parameters.approaches.empty(); for (const auto i : util::irange(0UL, parameters.coordinates.size())) { if (use_hints && parameters.hints[i] && !parameters.hints[i]->segment_hints.empty() && parameters.hints[i]->IsValid(parameters.coordinates[i], facade)) { for (const auto &seg_hint : parameters.hints[i]->segment_hints) { phantom_nodes[i].push_back(PhantomNodeWithDistance{ seg_hint.phantom, util::coordinate_calculation::greatCircleDistance( parameters.coordinates[i], seg_hint.phantom.location)}); } continue; } phantom_nodes[i] = facade.NearestPhantomNodesInRange( parameters.coordinates[i], radiuses[i], use_bearings ? parameters.bearings[i] : boost::none, use_approaches && parameters.approaches[i] ? parameters.approaches[i].get() : engine::Approach::UNRESTRICTED, use_all_edges); } return phantom_nodes; } std::vector> GetPhantomNodes(const datafacade::BaseDataFacade &facade, const api::BaseParameters ¶meters, size_t number_of_results) const { std::vector> phantom_nodes( parameters.coordinates.size()); const bool use_hints = !parameters.hints.empty(); const bool use_bearings = !parameters.bearings.empty(); const bool use_radiuses = !parameters.radiuses.empty(); const bool use_approaches = !parameters.approaches.empty(); BOOST_ASSERT(parameters.IsValid()); for (const auto i : util::irange(0UL, parameters.coordinates.size())) { if (use_hints && parameters.hints[i] && !parameters.hints[i]->segment_hints.empty() && parameters.hints[i]->IsValid(parameters.coordinates[i], facade)) { for (const auto &seg_hint : parameters.hints[i]->segment_hints) { phantom_nodes[i].push_back(PhantomNodeWithDistance{ seg_hint.phantom, util::coordinate_calculation::greatCircleDistance( parameters.coordinates[i], seg_hint.phantom.location)}); } continue; } phantom_nodes[i] = facade.NearestPhantomNodes( parameters.coordinates[i], number_of_results, use_radiuses ? parameters.radiuses[i] : default_radius, use_bearings ? parameters.bearings[i] : boost::none, use_approaches && parameters.approaches[i] ? parameters.approaches[i].get() : engine::Approach::UNRESTRICTED); // we didn't find a fitting node, return error if (phantom_nodes[i].empty()) { break; } } return phantom_nodes; } std::vector GetPhantomNodes(const datafacade::BaseDataFacade &facade, const api::BaseParameters ¶meters) const { std::vector alternatives(parameters.coordinates.size()); const bool use_hints = !parameters.hints.empty(); const bool use_bearings = !parameters.bearings.empty(); const bool use_radiuses = !parameters.radiuses.empty(); const bool use_approaches = !parameters.approaches.empty(); const bool use_all_edges = parameters.snapping == api::BaseParameters::SnappingType::Any; BOOST_ASSERT(parameters.IsValid()); for (const auto i : util::irange(0UL, parameters.coordinates.size())) { if (use_hints && parameters.hints[i] && !parameters.hints[i]->segment_hints.empty() && parameters.hints[i]->IsValid(parameters.coordinates[i], facade)) { std::transform(parameters.hints[i]->segment_hints.begin(), parameters.hints[i]->segment_hints.end(), std::back_inserter(alternatives[i].first), [](const auto &seg_hint) { return seg_hint.phantom; }); // we don't set the second one - it will be marked as invalid continue; } alternatives[i] = facade.NearestCandidatesWithAlternativeFromBigComponent( parameters.coordinates[i], use_radiuses ? parameters.radiuses[i] : default_radius, use_bearings ? parameters.bearings[i] : boost::none, use_approaches && parameters.approaches[i] ? parameters.approaches[i].get() : engine::Approach::UNRESTRICTED, use_all_edges); // we didn't find a fitting node, return error if (alternatives[i].first.empty()) { // This ensures the list of phantom nodes only consists of valid nodes. // We can use this on the call-site to detect an error. alternatives.pop_back(); break; } BOOST_ASSERT(!alternatives[i].first.empty()); } return alternatives; } std::string MissingPhantomErrorMessage(const std::vector &alternatives, const std::vector &coordinates) const { BOOST_ASSERT(alternatives.size() < coordinates.size()); auto mismatch = std::mismatch(alternatives.begin(), alternatives.end(), coordinates.begin(), coordinates.end(), [](const auto &candidates_pair, const auto &coordinate) { return std::any_of(candidates_pair.first.begin(), candidates_pair.first.end(), [&](const auto &phantom) { return phantom.input_location == coordinate; }); }); std::size_t missing_index = std::distance(alternatives.begin(), mismatch.first); return std::string("Could not find a matching segment for coordinate ") + std::to_string(missing_index); } const boost::optional default_radius; }; } // namespace osrm::engine::plugins #endif /* BASE_PLUGIN_HPP */