/* Copyright (c) 2015, Project OSRM contributors All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef ROUND_TRIP_HPP #define ROUND_TRIP_HPP #include "plugin_base.hpp" #include "../algorithms/object_encoder.hpp" #include "../data_structures/query_edge.hpp" #include "../data_structures/search_engine.hpp" #include "../descriptors/descriptor_base.hpp" #include "../descriptors/json_descriptor.hpp" #include "../util/json_renderer.hpp" #include "../util/make_unique.hpp" #include "../util/string_util.hpp" #include "../util/timing_util.hpp" #include "../util/simple_logger.hpp" #include #include #include #include #include #include #include #include template class RoundTripPlugin final : public BasePlugin { private: std::string descriptor_string; DataFacadeT *facade; std::unique_ptr> search_engine_ptr; void NearestNeighbour(const RouteParameters & route_parameters, const PhantomNodeArray & phantom_node_vector, std::vector & dist_table, InternalRouteResult & min_route, std::vector & min_loc_permutation) { ////////////////////////////////////////////////////////////////////////////////////////////////// // START GREEDY NEAREST NEIGHBOUR HERE // 1. grab a random location and mark as starting point // 2. find the nearest unvisited neighbour, set it as the current location and mark as visited // 3. repeat 2 until there is no unvisited location // 4. return route back to starting point // 5. compute route // 6. repeat 1-5 with different starting points and choose iteration with shortest trip // 6. DONE! ////////////////////////////////////////////////////////////////////////////////////////////////// const auto number_of_locations = phantom_node_vector.size(); min_route.shortest_path_length = std::numeric_limits::max(); // is_lonely_island[i] indicates whether node i is a node that cannot be reached from other nodes // 1 means that node i is a lonely island // 0 means that it is not known for node i // -1 means that node i is not a lonely island but a reachable, connected node std::vector is_lonely_island(number_of_locations, 0); int count_unreachables; // ALWAYS START AT ANOTHER STARTING POINT for(int start_node = 0; start_node < number_of_locations; ++start_node) { if (is_lonely_island[start_node] >= 0) { // if node is a lonely island it is an unsuitable node to start from and shall be skipped if (is_lonely_island[start_node]) continue; count_unreachables = 0; auto start_dist_begin = dist_table.begin() + (start_node * number_of_locations); auto start_dist_end = dist_table.begin() + ((start_node + 1) * number_of_locations); for (auto it2 = start_dist_begin; it2 != start_dist_end; ++it2) { if (*it2 == 0 || *it2 == std::numeric_limits::max()) { ++count_unreachables; } } if (count_unreachables >= number_of_locations) { is_lonely_island[start_node] = 1; continue; } } int curr_node = start_node; is_lonely_island[curr_node] = -1; InternalRouteResult raw_route; //TODO: Should we always use the same vector or does it not matter at all because of loop scope? std::vector loc_permutation(number_of_locations, -1); loc_permutation[start_node] = 0; // visited[i] indicates whether node i was already visited by the salesman std::vector visited(number_of_locations, false); visited[start_node] = true; PhantomNodes viapoint; // 3. REPEAT FOR EVERY UNVISITED NODE for(int via_point = 1; via_point < number_of_locations; ++via_point) { int min_dist = std::numeric_limits::max(); int min_id = -1; // 2. FIND NEAREST NEIGHBOUR auto row_begin_iterator = dist_table.begin() + (curr_node * number_of_locations); auto row_end_iterator = dist_table.begin() + ((curr_node + 1) * number_of_locations); for (auto it = row_begin_iterator; it != row_end_iterator; ++it) { auto index = std::distance(row_begin_iterator, it); if (is_lonely_island[index] < 1 && !visited[index] && *it < min_dist) { min_dist = *it; min_id = index; } } // in case there was no unvisited and reachable node found, it means that all remaining (unvisited) nodes must be lonely islands if (min_id == -1) { for(int loc = 0; loc < visited.size(); ++loc) { if (!visited[loc]) { is_lonely_island[loc] = 1; } } break; } // set the nearest unvisited location as the next via_point else { is_lonely_island[min_id] = -1; loc_permutation[min_id] = via_point; visited[min_id] = true; viapoint = PhantomNodes{phantom_node_vector[curr_node][0], phantom_node_vector[min_id][0]}; raw_route.segment_end_coordinates.emplace_back(viapoint); curr_node = min_id; } } // 4. ROUTE BACK TO STARTING POINT viapoint = PhantomNodes{raw_route.segment_end_coordinates.back().target_phantom, phantom_node_vector[start_node][0]}; raw_route.segment_end_coordinates.emplace_back(viapoint); // 5. COMPUTE ROUTE search_engine_ptr->shortest_path(raw_route.segment_end_coordinates, route_parameters.uturns, raw_route); // check round trip with this starting point is shorter than the shortest round trip found till now if (raw_route.shortest_path_length < min_route.shortest_path_length) { min_route = raw_route; min_loc_permutation = loc_permutation; } } } public: explicit RoundTripPlugin(DataFacadeT *facade) : descriptor_string("trip"), facade(facade) { search_engine_ptr = osrm::make_unique>(facade); } const std::string GetDescriptor() const override final { return descriptor_string; } int HandleRequest(const RouteParameters &route_parameters, osrm::json::Object &json_result) override final { // check if all inputs are coordinates if (!check_all_coordinates(route_parameters.coordinates)) { return 400; } const bool checksum_OK = (route_parameters.check_sum == facade->GetCheckSum()); // find phantom nodes for all input coords PhantomNodeArray phantom_node_vector(route_parameters.coordinates.size()); for (const auto i : osrm::irange(0, route_parameters.coordinates.size())) { // if client hints are helpful, encode hints if (checksum_OK && i < route_parameters.hints.size() && !route_parameters.hints[i].empty()) { PhantomNode current_phantom_node; ObjectEncoder::DecodeFromBase64(route_parameters.hints[i], current_phantom_node); if (current_phantom_node.is_valid(facade->GetNumberOfNodes())) { phantom_node_vector[i].emplace_back(std::move(current_phantom_node)); continue; } } facade->IncrementalFindPhantomNodeForCoordinate(route_parameters.coordinates[i], phantom_node_vector[i], 1); if (phantom_node_vector[i].size() > 1) { phantom_node_vector[i].erase(phantom_node_vector[i].begin()); } BOOST_ASSERT(phantom_node_vector[i].front().is_valid(facade->GetNumberOfNodes())); } // compute the distance table of all phantom nodes const std::shared_ptr> result_table = search_engine_ptr->distance_table(phantom_node_vector); if (!result_table) { return 400; } // compute TSP round trip InternalRouteResult min_route; std::vector min_loc_permutation; TIMER_START(tsp_nn); NearestNeighbour(route_parameters, phantom_node_vector, *result_table, min_route, min_loc_permutation); TIMER_STOP(tsp_nn); SimpleLogger().Write() << "Distance " << min_route.shortest_path_length; SimpleLogger().Write() << "Time " << TIMER_MSEC(tsp_nn); // return result to json std::unique_ptr> descriptor; descriptor = osrm::make_unique>(facade); descriptor->SetConfig(route_parameters); descriptor->Run(min_route, json_result); osrm::json::Array json_loc_permutation; json_loc_permutation.values.insert(json_loc_permutation.values.end(), min_loc_permutation.begin(), min_loc_permutation.end()); json_result.values["nn_loc_permutation"] = json_loc_permutation; json_result.values["nn_distance"] = min_route.shortest_path_length; json_result.values["nn_runtime"] = TIMER_MSEC(tsp_nn); return 200; } }; #endif // ROUND_TRIP_HPP