#ifndef ROUTING_BASE_HPP
#define ROUTING_BASE_HPP

#include "extractor/guidance/turn_instruction.hpp"
#include "engine/datafacade/datafacade_base.hpp"
#include "engine/edge_unpacker.hpp"
#include "engine/internal_route_result.hpp"
#include "engine/search_engine_data.hpp"
#include "util/coordinate_calculation.hpp"
#include "util/guidance/turn_bearing.hpp"
#include "util/typedefs.hpp"

#include <boost/assert.hpp>

#include <cstddef>
#include <cstdint>

#include <algorithm>
#include <iterator>
#include <memory>
#include <numeric>
#include <stack>
#include <utility>
#include <vector>

namespace osrm
{
namespace engine
{

namespace routing_algorithms
{

class BasicRoutingInterface
{
  protected:
    using EdgeData = datafacade::BaseDataFacade::EdgeData;

  public:
    /*
    min_edge_offset is needed in case we use multiple
    nodes as start/target nodes with different (even negative) offsets.
    In that case the termination criterion is not correct
    anymore.

    Example:
    forward heap: a(-100), b(0),
    reverse heap: c(0), d(100)

    a --- d
      \ /
      / \
    b --- c

    This is equivalent to running a bi-directional Dijkstra on the following graph:

        a --- d
       /  \ /  \
      y    x    z
       \  / \  /
        b --- c

    The graph is constructed by inserting nodes y and z that are connected to the initial nodes
    using edges (y, a) with weight -100, (y, b) with weight 0 and,
    (d, z) with weight 100, (c, z) with weight 0 corresponding.
    Since we are dealing with a graph that contains _negative_ edges,
    we need to add an offset to the termination criterion.
    */
    void RoutingStep(const std::shared_ptr<const datafacade::BaseDataFacade> facade,
                     SearchEngineData::QueryHeap &forward_heap,
                     SearchEngineData::QueryHeap &reverse_heap,
                     NodeID &middle_node_id,
                     std::int32_t &upper_bound,
                     std::int32_t min_edge_offset,
                     const bool forward_direction,
                     const bool stalling,
                     const bool force_loop_forward,
                     const bool force_loop_reverse) const;

    EdgeWeight GetLoopWeight(const std::shared_ptr<const datafacade::BaseDataFacade> facade,
                             NodeID node) const;

    template <typename RandomIter>
    void UnpackPath(const std::shared_ptr<const datafacade::BaseDataFacade> facade,
                    RandomIter packed_path_begin,
                    RandomIter packed_path_end,
                    const PhantomNodes &phantom_node_pair,
                    std::vector<PathData> &unpacked_path) const
    {
        BOOST_ASSERT(std::distance(packed_path_begin, packed_path_end) > 0);

        const bool start_traversed_in_reverse =
            (*packed_path_begin != phantom_node_pair.source_phantom.forward_segment_id.id);
        const bool target_traversed_in_reverse =
            (*std::prev(packed_path_end) != phantom_node_pair.target_phantom.forward_segment_id.id);

        BOOST_ASSERT(*packed_path_begin == phantom_node_pair.source_phantom.forward_segment_id.id ||
                     *packed_path_begin == phantom_node_pair.source_phantom.reverse_segment_id.id);
        BOOST_ASSERT(
            *std::prev(packed_path_end) == phantom_node_pair.target_phantom.forward_segment_id.id ||
            *std::prev(packed_path_end) == phantom_node_pair.target_phantom.reverse_segment_id.id);

        UnpackCHPath(
            *facade,
            packed_path_begin,
            packed_path_end,
            [this,
             &facade,
             &unpacked_path,
             &phantom_node_pair,
             &start_traversed_in_reverse,
             &target_traversed_in_reverse](std::pair<NodeID, NodeID> & /* edge */,
                                           const EdgeData &edge_data) {

                BOOST_ASSERT_MSG(!edge_data.shortcut, "original edge flagged as shortcut");
                const auto name_index = facade->GetNameIndexFromEdgeID(edge_data.id);
                const auto turn_instruction = facade->GetTurnInstructionForEdgeID(edge_data.id);
                const extractor::TravelMode travel_mode =
                    (unpacked_path.empty() && start_traversed_in_reverse)
                        ? phantom_node_pair.source_phantom.backward_travel_mode
                        : facade->GetTravelModeForEdgeID(edge_data.id);

                const auto geometry_index = facade->GetGeometryIndexForEdgeID(edge_data.id);
                std::vector<NodeID> id_vector;
                std::vector<EdgeWeight> weight_vector;
                std::vector<DatasourceID> datasource_vector;
                if (geometry_index.forward)
                {
                    id_vector = facade->GetUncompressedForwardGeometry(geometry_index.id);
                    weight_vector = facade->GetUncompressedForwardWeights(geometry_index.id);
                    datasource_vector =
                        facade->GetUncompressedForwardDatasources(geometry_index.id);
                }
                else
                {
                    id_vector = facade->GetUncompressedReverseGeometry(geometry_index.id);
                    weight_vector = facade->GetUncompressedReverseWeights(geometry_index.id);
                    datasource_vector =
                        facade->GetUncompressedReverseDatasources(geometry_index.id);
                }
                BOOST_ASSERT(id_vector.size() > 0);
                BOOST_ASSERT(weight_vector.size() > 0);
                BOOST_ASSERT(datasource_vector.size() > 0);

                const auto total_weight =
                    std::accumulate(weight_vector.begin(), weight_vector.end(), 0);

                BOOST_ASSERT(weight_vector.size() == id_vector.size() - 1);
                const bool is_first_segment = unpacked_path.empty();

                const std::size_t start_index =
                    (is_first_segment
                         ? ((start_traversed_in_reverse)
                                ? weight_vector.size() -
                                      phantom_node_pair.source_phantom.fwd_segment_position - 1
                                : phantom_node_pair.source_phantom.fwd_segment_position)
                         : 0);
                const std::size_t end_index = weight_vector.size();

                BOOST_ASSERT(start_index >= 0);
                BOOST_ASSERT(start_index < end_index);
                for (std::size_t segment_idx = start_index; segment_idx < end_index; ++segment_idx)
                {
                    unpacked_path.push_back(
                        PathData{id_vector[segment_idx + 1],
                                 name_index,
                                 weight_vector[segment_idx],
                                 extractor::guidance::TurnInstruction::NO_TURN(),
                                 {{0, INVALID_LANEID}, INVALID_LANE_DESCRIPTIONID},
                                 travel_mode,
                                 INVALID_ENTRY_CLASSID,
                                 datasource_vector[segment_idx],
                                 util::guidance::TurnBearing(0),
                                 util::guidance::TurnBearing(0)});
                }
                BOOST_ASSERT(unpacked_path.size() > 0);
                if (facade->hasLaneData(edge_data.id))
                    unpacked_path.back().lane_data = facade->GetLaneData(edge_data.id);

                unpacked_path.back().entry_classid = facade->GetEntryClassID(edge_data.id);
                unpacked_path.back().turn_instruction = turn_instruction;
                unpacked_path.back().duration_until_turn += (edge_data.weight - total_weight);
                unpacked_path.back().pre_turn_bearing = facade->PreTurnBearing(edge_data.id);
                unpacked_path.back().post_turn_bearing = facade->PostTurnBearing(edge_data.id);
            });

        std::size_t start_index = 0, end_index = 0;
        std::vector<unsigned> id_vector;
        std::vector<EdgeWeight> weight_vector;
        std::vector<DatasourceID> datasource_vector;
        const bool is_local_path = (phantom_node_pair.source_phantom.packed_geometry_id ==
                                    phantom_node_pair.target_phantom.packed_geometry_id) &&
                                   unpacked_path.empty();

        if (target_traversed_in_reverse)
        {
            id_vector = facade->GetUncompressedReverseGeometry(
                phantom_node_pair.target_phantom.packed_geometry_id);

            weight_vector = facade->GetUncompressedReverseWeights(
                phantom_node_pair.target_phantom.packed_geometry_id);

            datasource_vector = facade->GetUncompressedReverseDatasources(
                phantom_node_pair.target_phantom.packed_geometry_id);

            if (is_local_path)
            {
                start_index = weight_vector.size() -
                              phantom_node_pair.source_phantom.fwd_segment_position - 1;
            }
            end_index =
                weight_vector.size() - phantom_node_pair.target_phantom.fwd_segment_position - 1;
        }
        else
        {
            if (is_local_path)
            {
                start_index = phantom_node_pair.source_phantom.fwd_segment_position;
            }
            end_index = phantom_node_pair.target_phantom.fwd_segment_position;

            id_vector = facade->GetUncompressedForwardGeometry(
                phantom_node_pair.target_phantom.packed_geometry_id);

            weight_vector = facade->GetUncompressedForwardWeights(
                phantom_node_pair.target_phantom.packed_geometry_id);

            datasource_vector = facade->GetUncompressedForwardDatasources(
                phantom_node_pair.target_phantom.packed_geometry_id);
        }

        // Given the following compressed geometry:
        // U---v---w---x---y---Z
        //    s           t
        // s: fwd_segment 0
        // t: fwd_segment 3
        // -> (U, v), (v, w), (w, x)
        // note that (x, t) is _not_ included but needs to be added later.
        for (std::size_t segment_idx = start_index; segment_idx != end_index;
             (start_index < end_index ? ++segment_idx : --segment_idx))
        {
            BOOST_ASSERT(segment_idx < id_vector.size() - 1);
            BOOST_ASSERT(phantom_node_pair.target_phantom.forward_travel_mode > 0);
            unpacked_path.push_back(PathData{
                id_vector[start_index < end_index ? segment_idx + 1 : segment_idx - 1],
                phantom_node_pair.target_phantom.name_id,
                weight_vector[segment_idx],
                extractor::guidance::TurnInstruction::NO_TURN(),
                {{0, INVALID_LANEID}, INVALID_LANE_DESCRIPTIONID},
                target_traversed_in_reverse ? phantom_node_pair.target_phantom.backward_travel_mode
                                            : phantom_node_pair.target_phantom.forward_travel_mode,
                INVALID_ENTRY_CLASSID,
                datasource_vector[segment_idx],
                util::guidance::TurnBearing(0),
                util::guidance::TurnBearing(0)});
        }

        if (unpacked_path.size() > 0)
        {
            const auto source_weight = start_traversed_in_reverse
                                           ? phantom_node_pair.source_phantom.reverse_weight
                                           : phantom_node_pair.source_phantom.forward_weight;
            // The above code will create segments for (v, w), (w,x), (x, y) and (y, Z).
            // However the first segment duration needs to be adjusted to the fact that the source
            // phantom is in the middle of the segment. We do this by subtracting v--s from the
            // duration.

            // Since it's possible duration_until_turn can be less than source_weight here if
            // a negative enough turn penalty is used to modify this edge weight during
            // osrm-contract, we clamp to 0 here so as not to return a negative duration
            // for this segment.

            // TODO this creates a scenario where it's possible the duration from a phantom
            // node to the first turn would be the same as from end to end of a segment,
            // which is obviously incorrect and not ideal...
            unpacked_path.front().duration_until_turn =
                std::max(unpacked_path.front().duration_until_turn - source_weight, 0);
        }

        // there is no equivalent to a node-based node in an edge-expanded graph.
        // two equivalent routes may start (or end) at different node-based edges
        // as they are added with the offset how much "weight" on the edge
        // has already been traversed. Depending on offset one needs to remove
        // the last node.
        if (unpacked_path.size() > 1)
        {
            const std::size_t last_index = unpacked_path.size() - 1;
            const std::size_t second_to_last_index = last_index - 1;

            if (unpacked_path[last_index].turn_via_node ==
                unpacked_path[second_to_last_index].turn_via_node)
            {
                unpacked_path.pop_back();
            }
            BOOST_ASSERT(!unpacked_path.empty());
        }
    }

    /**
     * Unpacks a single edge (NodeID->NodeID) from the CH graph down to it's original non-shortcut
     * route.
     * @param from the node the CH edge starts at
     * @param to the node the CH edge finishes at
     * @param unpacked_path the sequence of original NodeIDs that make up the expanded CH edge
     */
    void UnpackEdge(const std::shared_ptr<const datafacade::BaseDataFacade> facade,
                    const NodeID from,
                    const NodeID to,
                    std::vector<NodeID> &unpacked_path) const;

    void RetrievePackedPathFromHeap(const SearchEngineData::QueryHeap &forward_heap,
                                    const SearchEngineData::QueryHeap &reverse_heap,
                                    const NodeID middle_node_id,
                                    std::vector<NodeID> &packed_path) const;

    void RetrievePackedPathFromSingleHeap(const SearchEngineData::QueryHeap &search_heap,
                                          const NodeID middle_node_id,
                                          std::vector<NodeID> &packed_path) const;

    // assumes that heaps are already setup correctly.
    // ATTENTION: This only works if no additional offset is supplied next to the Phantom Node
    // Offsets.
    // In case additional offsets are supplied, you might have to force a loop first.
    // A forced loop might be necessary, if source and target are on the same segment.
    // If this is the case and the offsets of the respective direction are larger for the source
    // than the target
    // then a force loop is required (e.g. source_phantom.forward_segment_id ==
    // target_phantom.forward_segment_id
    // && source_phantom.GetForwardWeightPlusOffset() > target_phantom.GetForwardWeightPlusOffset())
    // requires
    // a force loop, if the heaps have been initialized with positive offsets.
    void Search(const std::shared_ptr<const datafacade::BaseDataFacade> facade,
                SearchEngineData::QueryHeap &forward_heap,
                SearchEngineData::QueryHeap &reverse_heap,
                std::int32_t &weight,
                std::vector<NodeID> &packed_leg,
                const bool force_loop_forward,
                const bool force_loop_reverse,
                const int duration_upper_bound = INVALID_EDGE_WEIGHT) const;

    // assumes that heaps are already setup correctly.
    // A forced loop might be necessary, if source and target are on the same segment.
    // If this is the case and the offsets of the respective direction are larger for the source
    // than the target
    // then a force loop is required (e.g. source_phantom.forward_segment_id ==
    // target_phantom.forward_segment_id
    // && source_phantom.GetForwardWeightPlusOffset() > target_phantom.GetForwardWeightPlusOffset())
    // requires
    // a force loop, if the heaps have been initialized with positive offsets.
    void SearchWithCore(const std::shared_ptr<const datafacade::BaseDataFacade> facade,
                        SearchEngineData::QueryHeap &forward_heap,
                        SearchEngineData::QueryHeap &reverse_heap,
                        SearchEngineData::QueryHeap &forward_core_heap,
                        SearchEngineData::QueryHeap &reverse_core_heap,
                        int &weight,
                        std::vector<NodeID> &packed_leg,
                        const bool force_loop_forward,
                        const bool force_loop_reverse,
                        int duration_upper_bound = INVALID_EDGE_WEIGHT) const;

    bool NeedsLoopForward(const PhantomNode &source_phantom,
                          const PhantomNode &target_phantom) const;

    bool NeedsLoopBackwards(const PhantomNode &source_phantom,
                            const PhantomNode &target_phantom) const;

    double GetPathDistance(const std::shared_ptr<const datafacade::BaseDataFacade> facade,
                           const std::vector<NodeID> &packed_path,
                           const PhantomNode &source_phantom,
                           const PhantomNode &target_phantom) const;

    // Requires the heaps for be empty
    // If heaps should be adjusted to be initialized outside of this function,
    // the addition of force_loop parameters might be required
    double
    GetNetworkDistanceWithCore(const std::shared_ptr<const datafacade::BaseDataFacade> facade,
                               SearchEngineData::QueryHeap &forward_heap,
                               SearchEngineData::QueryHeap &reverse_heap,
                               SearchEngineData::QueryHeap &forward_core_heap,
                               SearchEngineData::QueryHeap &reverse_core_heap,
                               const PhantomNode &source_phantom,
                               const PhantomNode &target_phantom,
                               int duration_upper_bound = INVALID_EDGE_WEIGHT) const;

    // Requires the heaps for be empty
    // If heaps should be adjusted to be initialized outside of this function,
    // the addition of force_loop parameters might be required
    double GetNetworkDistance(const std::shared_ptr<const datafacade::BaseDataFacade> facade,
                              SearchEngineData::QueryHeap &forward_heap,
                              SearchEngineData::QueryHeap &reverse_heap,
                              const PhantomNode &source_phantom,
                              const PhantomNode &target_phantom,
                              int duration_upper_bound = INVALID_EDGE_WEIGHT) const;
};

} // namespace routing_algorithms
} // namespace engine
} // namespace osrm

#endif // ROUTING_BASE_HPP