/* Copyright (c) 2015, Project OSRM contributors All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef TRIP_HPP #define TRIP_HPP #include "plugin_base.hpp" #include "../algorithms/object_encoder.hpp" #include "../algorithms/tarjan_scc.hpp" #include "../algorithms/trip_nearest_neighbour.hpp" #include "../algorithms/trip_farthest_insertion.hpp" #include "../algorithms/trip_brute_force.hpp" #include "../data_structures/search_engine.hpp" #include "../data_structures/matrix_graph_wrapper.hpp" // wrapper to use tarjan // scc on dist table #include "../descriptors/descriptor_base.hpp" // to make json output #include "../descriptors/json_descriptor.hpp" // to make json output #include "../util/make_unique.hpp" #include "../util/timing_util.hpp" // to time runtime #include "../util/simple_logger.hpp" // for logging output #include "../util/dist_table_wrapper.hpp" // to access the dist // table more easily #include #include #include #include #include #include #include #include #include template class RoundTripPlugin final : public BasePlugin { private: std::string descriptor_string; DataFacadeT *facade; std::unique_ptr> search_engine_ptr; public: explicit RoundTripPlugin(DataFacadeT *facade) : descriptor_string("trip"), facade(facade) { search_engine_ptr = osrm::make_unique>(facade); } const std::string GetDescriptor() const override final { return descriptor_string; } void GetPhantomNodes(const RouteParameters &route_parameters, std::vector &phantom_node_pair_list) { const bool checksum_OK = (route_parameters.check_sum == facade->GetCheckSum()); const auto &input_bearings = route_parameters.bearings; // find phantom nodes for all input coords for (const auto i : osrm::irange(0, route_parameters.coordinates.size())) { // if client hints are helpful, encode hints if (checksum_OK && i < route_parameters.hints.size() && !route_parameters.hints[i].empty()) { PhantomNode current_phantom_node; ObjectEncoder::DecodeFromBase64(route_parameters.hints[i], current_phantom_node); if (current_phantom_node.is_valid(facade->GetNumberOfNodes())) { phantom_node_pair_list[i] = std::make_pair(current_phantom_node, current_phantom_node); continue; } } const int bearing = input_bearings.size() > 0 ? input_bearings[i].first : 0; const int range = input_bearings.size() > 0 ? (input_bearings[i].second?*input_bearings[i].second:10) : 180; auto phantom_nodes = facade->NearestPhantomNodes(route_parameters.coordinates[i], 1, bearing, range); // FIXME we only use the pair because that is what DistanceTable expects phantom_node_pair_list[i] = std::make_pair(phantom_nodes.front().phantom_node, phantom_nodes.front().phantom_node); BOOST_ASSERT(phantom_node_pair_list[i].first.is_valid(facade->GetNumberOfNodes())); } } // Object to hold all strongly connected components (scc) of a graph // to access all graphs with component ID i, get the iterators by: // auto start = std::begin(scc_component.component) + scc_component.range[i]; // auto end = std::begin(scc_component.component) + scc_component.range[i+1]; struct SCC_Component { // in_component: all NodeIDs sorted by component ID // in_range: index where a new component starts // // example: NodeID 0, 1, 2, 4, 5 are in component 0 // NodeID 3, 6, 7, 8 are in component 1 // => in_component = [0, 1, 2, 4, 5, 3, 6, 7, 8] // => in_range = [0, 5] SCC_Component(std::vector in_component, std::vector in_range) : component(std::move(in_component)), range(std::move(in_range)) { range.push_back(component.size()); BOOST_ASSERT_MSG(component.size() >= range.size(), "scc component and its ranges do not match"); BOOST_ASSERT_MSG(component.size() > 0, "there's no scc component"); BOOST_ASSERT_MSG(*std::max_element(range.begin(), range.end()) <= component.size(), "scc component ranges are out of bound"); BOOST_ASSERT_MSG(*std::min_element(range.begin(), range.end()) >= 0, "invalid scc component range"); BOOST_ASSERT_MSG(std::is_sorted(std::begin(range), std::end(range)), "invalid component ranges"); }; // constructor to use when whole graph is one single scc SCC_Component(std::vector in_component) : component(std::move(in_component)), range({0, component.size()}){}; std::size_t GetNumberOfComponents() const { BOOST_ASSERT_MSG(range.size() > 0, "there's no range"); return range.size() - 1; } const std::vector component; std::vector range; }; // takes the number of locations and its distance matrix, // identifies and splits the graph in its strongly connected components (scc) // and returns an SCC_Component SCC_Component SplitUnaccessibleLocations(const std::size_t number_of_locations, const DistTableWrapper &result_table) { if (std::find(std::begin(result_table), std::end(result_table), INVALID_EDGE_WEIGHT) == std::end(result_table)) { // whole graph is one scc std::vector location_ids(number_of_locations); std::iota(std::begin(location_ids), std::end(location_ids), 0); return SCC_Component(std::move(location_ids)); } // Run TarjanSCC auto wrapper = std::make_shared>(result_table.GetTable(), number_of_locations); auto scc = TarjanSCC>(wrapper); scc.run(); const auto number_of_components = scc.get_number_of_components(); std::vector range_insertion; std::vector range; range_insertion.reserve(number_of_components); range.reserve(number_of_components); std::vector components(number_of_locations, 0); std::size_t prefix = 0; for (std::size_t j = 0; j < number_of_components; ++j) { range_insertion.push_back(prefix); range.push_back(prefix); prefix += scc.get_component_size(j); } for (std::size_t i = 0; i < number_of_locations; ++i) { components[range_insertion[scc.get_component_id(i)]] = i; ++range_insertion[scc.get_component_id(i)]; } return SCC_Component(std::move(components), std::move(range)); } void SetLocPermutationOutput(const std::vector &permutation, osrm::json::Object &json_result) { osrm::json::Array json_permutation; json_permutation.values.insert(std::end(json_permutation.values), std::begin(permutation), std::end(permutation)); json_result.values["permutation"] = json_permutation; } InternalRouteResult ComputeRoute(const std::vector &phantom_node_pair_list, const RouteParameters &route_parameters, const std::vector &trip) { InternalRouteResult min_route; // given he final trip, compute total distance and return the route and location permutation PhantomNodes viapoint; const auto start = std::begin(trip); const auto end = std::end(trip); // computes a roundtrip from the nodes in trip for (auto it = start; it != end; ++it) { const auto from_node = *it; // if from_node is the last node, compute the route from the last to the first location const auto to_node = std::next(it) != end ? *std::next(it) : *start; viapoint = PhantomNodes{phantom_node_pair_list[from_node].first, phantom_node_pair_list[to_node].first}; min_route.segment_end_coordinates.emplace_back(viapoint); } BOOST_ASSERT(min_route.segment_end_coordinates.size() == trip.size()); std::vector uturns(trip.size() + 1); std::transform(trip.begin(), trip.end(), uturns.begin(), [&route_parameters](const NodeID idx) { return route_parameters.uturns[idx]; }); uturns.back() = route_parameters.uturns[trip.front()]; search_engine_ptr->shortest_path(min_route.segment_end_coordinates, uturns, min_route); BOOST_ASSERT_MSG(min_route.shortest_path_length < INVALID_EDGE_WEIGHT, "unroutable route"); return min_route; } int HandleRequest(const RouteParameters &route_parameters, osrm::json::Object &json_result) override final { // check if all inputs are coordinates if (!check_all_coordinates(route_parameters.coordinates)) { return 400; } const auto &input_bearings = route_parameters.bearings; if (input_bearings.size() > 0 && route_parameters.coordinates.size() != input_bearings.size()) { json_result.values["status"] = "Number of bearings does not match number of coordinates ."; return 400; } // get phantom nodes std::vector phantom_node_pair_list(route_parameters.coordinates.size()); GetPhantomNodes(route_parameters, phantom_node_pair_list); const auto number_of_locations = phantom_node_pair_list.size(); // compute the distance table of all phantom nodes const auto result_table = DistTableWrapper( *search_engine_ptr->distance_table(phantom_node_pair_list, phantom_node_pair_list), number_of_locations); if (result_table.size() == 0) { return 400; } const constexpr std::size_t BF_MAX_FEASABLE = 10; BOOST_ASSERT_MSG(result_table.size() == number_of_locations * number_of_locations, "Distance Table has wrong size."); // get scc components SCC_Component scc = SplitUnaccessibleLocations(number_of_locations, result_table); using NodeIDIterator = typename std::vector::const_iterator; std::vector> route_result; route_result.reserve(scc.GetNumberOfComponents()); TIMER_START(TRIP_TIMER); // run Trip computation for every SCC for (std::size_t k = 0; k < scc.GetNumberOfComponents(); ++k) { const auto component_size = scc.range[k + 1] - scc.range[k]; BOOST_ASSERT_MSG(component_size >= 0, "invalid component size"); if (component_size > 1) { std::vector scc_route; NodeIDIterator start = std::begin(scc.component) + scc.range[k]; NodeIDIterator end = std::begin(scc.component) + scc.range[k + 1]; if (component_size < BF_MAX_FEASABLE) { scc_route = osrm::trip::BruteForceTrip(start, end, number_of_locations, result_table); } else { scc_route = osrm::trip::FarthestInsertionTrip(start, end, number_of_locations, result_table); } // use this output if debugging of route is needed: // SimpleLogger().Write() << "Route #" << k << ": " << [&scc_route]() // { // std::string s = ""; // for (auto x : scc_route) // { // s += std::to_string(x) + " "; // } // return s; // }(); route_result.push_back(std::move(scc_route)); } else { // if component only consists of one node, add it to the result routes route_result.emplace_back(scc.component[scc.range[k]]); } } // compute all round trip routes std::vector comp_route; comp_route.reserve(route_result.size()); for (auto &elem : route_result) { comp_route.push_back(ComputeRoute(phantom_node_pair_list, route_parameters, elem)); } TIMER_STOP(TRIP_TIMER); SimpleLogger().Write() << "Trip calculation took: " << TIMER_MSEC(TRIP_TIMER) / 1000. << "s"; // prepare JSON output // create a json object for every trip osrm::json::Array trip; for (std::size_t i = 0; i < route_result.size(); ++i) { std::unique_ptr> descriptor = osrm::make_unique>(facade); descriptor->SetConfig(route_parameters); osrm::json::Object scc_trip; // set permutation output SetLocPermutationOutput(route_result[i], scc_trip); // set viaroute output descriptor->Run(comp_route[i], scc_trip); trip.values.push_back(std::move(scc_trip)); } json_result.values["trips"] = std::move(trip); return 200; } }; #endif // TRIP_HPP