#include "extractor/guidance/turn_analysis.hpp" #include "util/simple_logger.hpp" #include "util/coordinate.hpp" #include #include #include namespace osrm { namespace extractor { namespace guidance { // configuration of turn classification const bool constexpr INVERT = true; // what angle is interpreted as going straight const double constexpr STRAIGHT_ANGLE = 180.; // if a turn deviates this much from going straight, it will be kept straight const double constexpr MAXIMAL_ALLOWED_NO_TURN_DEVIATION = 3.; // angle that lies between two nearly indistinguishable roads const double constexpr NARROW_TURN_ANGLE = 30.; const double constexpr GROUP_ANGLE = 90; // angle difference that can be classified as straight, if its the only narrow turn const double constexpr FUZZY_ANGLE_DIFFERENCE = 15.; const double constexpr DISTINCTION_RATIO = 2; const unsigned constexpr INVALID_NAME_ID = 0; using EdgeData = util::NodeBasedDynamicGraph::EdgeData; bool requiresAnnouncement(const EdgeData &from, const EdgeData &to) { return !from.IsCompatibleTo(to); } struct Localizer { const std::vector *node_info_list = nullptr; util::Coordinate operator()(const NodeID nid) { if (node_info_list) { return {(*node_info_list)[nid].lon, (*node_info_list)[nid].lat}; } return {}; } }; static Localizer localizer; TurnAnalysis::TurnAnalysis(const util::NodeBasedDynamicGraph &node_based_graph, const std::vector &node_info_list, const RestrictionMap &restriction_map, const std::unordered_set &barrier_nodes, const CompressedEdgeContainer &compressed_edge_container) : node_based_graph(node_based_graph), node_info_list(node_info_list), restriction_map(restriction_map), barrier_nodes(barrier_nodes), compressed_edge_container(compressed_edge_container) { } namespace detail { inline FunctionalRoadClass roadClass(const TurnCandidate &candidate, const util::NodeBasedDynamicGraph &graph) { return graph.GetEdgeData(candidate.eid).road_classification.road_class; } inline bool isMotorwayClass(FunctionalRoadClass road_class) { return road_class == FunctionalRoadClass::MOTORWAY || road_class == FunctionalRoadClass::TRUNK; } inline bool isMotorwayClass(EdgeID eid, const util::NodeBasedDynamicGraph &node_based_graph) { return isMotorwayClass(node_based_graph.GetEdgeData(eid).road_classification.road_class); } inline bool isRampClass(EdgeID eid, const util::NodeBasedDynamicGraph &node_based_graph) { return isRampClass(node_based_graph.GetEdgeData(eid).road_classification.road_class); } } // namespace detail #define PRINT_DEBUG_CANDIDATES 0 std::vector TurnAnalysis::getTurns(const NodeID from, const EdgeID via_edge) const { localizer.node_info_list = &node_info_list; auto turn_candidates = getTurnCandidates(from, via_edge); const auto &in_edge_data = node_based_graph.GetEdgeData(via_edge); // main priority: roundabouts bool on_roundabout = in_edge_data.roundabout; bool can_enter_roundabout = false; bool can_exit_roundabout = false; for (const auto &candidate : turn_candidates) { const auto &edge_data = node_based_graph.GetEdgeData(candidate.eid); // only check actual outgoing edges if (edge_data.reversed) continue; if (edge_data.roundabout) { can_enter_roundabout = true; } else { can_exit_roundabout = true; } } if (on_roundabout || can_enter_roundabout) { return handleRoundabouts(from, via_edge, on_roundabout, can_enter_roundabout, can_exit_roundabout, std::move(turn_candidates)); } // set initial defaults for normal turns and modifier based on angle turn_candidates = setTurnTypes(from, via_edge, std::move(turn_candidates)); if (isMotorwayJunction(from, via_edge, turn_candidates)) { return handleMotorwayJunction(from, via_edge, std::move(turn_candidates)); } if (turn_candidates.size() == 1) { turn_candidates = handleOneWayTurn(from, via_edge, std::move(turn_candidates)); } else if (turn_candidates.size() == 2) { turn_candidates = handleTwoWayTurn(from, via_edge, std::move(turn_candidates)); } else if (turn_candidates.size() == 3) { turn_candidates = handleThreeWayTurn(from, via_edge, std::move(turn_candidates)); } else { turn_candidates = handleComplexTurn(from, via_edge, std::move(turn_candidates)); } // complex intersection, potentially requires conflict resolution return handleConflicts(from, via_edge, std::move(turn_candidates)); return turn_candidates; } inline std::size_t countValid(const std::vector &turn_candidates) { return std::count_if(turn_candidates.begin(), turn_candidates.end(), [](const TurnCandidate &candidate) { return candidate.valid; }); } std::vector TurnAnalysis::handleRoundabouts(const NodeID from, const EdgeID via_edge, const bool on_roundabout, const bool can_enter_roundabout, const bool can_exit_roundabout, std::vector turn_candidates) const { (void)from; // TODO requires differentiation between roundabouts and rotaries // detect via radius (get via circle through three vertices) NodeID node_v = node_based_graph.GetTarget(via_edge); if (on_roundabout) { // Shoule hopefully have only a single exit and continue // at least for cars. How about bikes? for (auto &candidate : turn_candidates) { const auto &out_data = node_based_graph.GetEdgeData(candidate.eid); if (out_data.roundabout) { // TODO can forks happen in roundabouts? E.g. required lane changes if (1 == node_based_graph.GetDirectedOutDegree(node_v)) { // No turn possible. candidate.instruction = TurnInstruction::NO_TURN(); } else { candidate.instruction = TurnInstruction::REMAIN_ROUNDABOUT(getTurnDirection(candidate.angle)); } } else { candidate.instruction = TurnInstruction::EXIT_ROUNDABOUT(getTurnDirection(candidate.angle)); } } #if PRINT_DEBUG_CANDIDATES std::cout << "On Roundabout Candidates:\n"; for (auto tc : turn_candidates) std::cout << "\t" << tc.toString() << " " << (int)node_based_graph.GetEdgeData(tc.eid).road_classification.road_class << " name: " << node_based_graph.GetEdgeData(tc.eid).name_id << std::endl; #endif return turn_candidates; } else { (void)can_enter_roundabout; BOOST_ASSERT(can_enter_roundabout); for (auto &candidate : turn_candidates) { if (!candidate.valid) continue; const auto &out_data = node_based_graph.GetEdgeData(candidate.eid); if (out_data.roundabout) { candidate.instruction = TurnInstruction::ENTER_ROUNDABOUT(getTurnDirection(candidate.angle)); if (can_exit_roundabout) { if (candidate.instruction.type == TurnType::EnterRotary) candidate.instruction.type = TurnType::EnterRotaryAtExit; if (candidate.instruction.type == TurnType::EnterRoundabout) candidate.instruction.type = TurnType::EnterRoundaboutAtExit; } } else { candidate.instruction = {TurnType::EnterAndExitRoundabout, getTurnDirection(candidate.angle)}; } } #if PRINT_DEBUG_CANDIDATES std::cout << "Into Roundabout Candidates:\n"; for (auto tc : turn_candidates) std::cout << "\t" << tc.toString() << " " << (int)node_based_graph.GetEdgeData(tc.eid).road_classification.road_class << " name: " << node_based_graph.GetEdgeData(tc.eid).name_id << std::endl; #endif return turn_candidates; } } std::vector TurnAnalysis::fallbackTurnAssignmentMotorway(std::vector turn_candidates) const { for (auto &candidate : turn_candidates) { const auto &out_data = node_based_graph.GetEdgeData(candidate.eid); util::SimpleLogger().Write(logWARNING) << "Candidate: " << candidate.toString() << " Name: " << out_data.name_id << " Road Class: " << (int)out_data.road_classification.road_class << " At: " << localizer(node_based_graph.GetTarget(candidate.eid)); if (!candidate.valid) continue; const auto type = detail::isMotorwayClass(out_data.road_classification.road_class) ? TurnType::Merge : TurnType::Turn; if (angularDeviation(candidate.angle, STRAIGHT_ANGLE) < FUZZY_ANGLE_DIFFERENCE) candidate.instruction = {type, DirectionModifier::Straight}; else { candidate.instruction = {type, candidate.angle > STRAIGHT_ANGLE ? DirectionModifier::SlightLeft : DirectionModifier::SlightRight}; } } return turn_candidates; } std::vector TurnAnalysis::handleFromMotorway( const NodeID from, const EdgeID via_edge, std::vector turn_candidates) const { (void)from; const auto &in_data = node_based_graph.GetEdgeData(via_edge); BOOST_ASSERT(detail::isMotorwayClass(in_data.road_classification.road_class)); const auto countExitingMotorways = [this](const std::vector &turn_candidates) { unsigned count = 0; for (const auto &candidate : turn_candidates) { if (candidate.valid && detail::isMotorwayClass(candidate.eid, node_based_graph)) ++count; } return count; }; // find the angle that continues on our current highway const auto getContinueAngle = [this, in_data](const std::vector &turn_candidates) { for (const auto &candidate : turn_candidates) { const auto &out_data = node_based_graph.GetEdgeData(candidate.eid); if (candidate.angle != 0 && in_data.name_id == out_data.name_id && in_data.name_id != 0 && detail::isMotorwayClass(out_data.road_classification.road_class)) return candidate.angle; } return turn_candidates[0].angle; }; const auto getMostLikelyContinue = [this, in_data](const std::vector &turn_candidates) { double angle = turn_candidates[0].angle; double best = 180; for (const auto &candidate : turn_candidates) { const auto &out_data = node_based_graph.GetEdgeData(candidate.eid); if (detail::isMotorwayClass(out_data.road_classification.road_class) && angularDeviation(candidate.angle, STRAIGHT_ANGLE) < best) { best = angularDeviation(candidate.angle, STRAIGHT_ANGLE); angle = candidate.angle; } } return angle; }; const auto findBestContinue = [&]() { const double continue_angle = getContinueAngle(turn_candidates); if (continue_angle != turn_candidates[0].angle) return continue_angle; else return getMostLikelyContinue(turn_candidates); }; // find continue angle const double continue_angle = findBestContinue(); // highway does not continue and has no obvious choice if (continue_angle == turn_candidates[0].angle) { if (turn_candidates.size() == 2) { // do not announce ramps at the end of a highway turn_candidates[1].instruction = {TurnType::NoTurn, getTurnDirection(turn_candidates[1].angle)}; } else if (turn_candidates.size() == 3) { // splitting ramp at the end of a highway if (turn_candidates[1].valid && turn_candidates[2].valid) { assignFork(via_edge, turn_candidates[2], turn_candidates[1]); } else { // ending in a passing ramp if (turn_candidates[1].valid) turn_candidates[1].instruction = {TurnType::NoTurn, getTurnDirection(turn_candidates[1].angle)}; else turn_candidates[2].instruction = {TurnType::NoTurn, getTurnDirection(turn_candidates[2].angle)}; } } else if (turn_candidates.size() == 4 && detail::roadClass(turn_candidates[1], node_based_graph) == detail::roadClass(turn_candidates[2], node_based_graph) && detail::roadClass(turn_candidates[2], node_based_graph) == detail::roadClass(turn_candidates[3], node_based_graph)) { // tripple fork at the end assignFork(via_edge, turn_candidates[3], turn_candidates[2], turn_candidates[1]); } else if (countValid(turn_candidates) > 0) // check whether turns exist at all { // FALLBACK, this should hopefully never be reached auto coord = localizer(node_based_graph.GetTarget(via_edge)); util::SimpleLogger().Write(logWARNING) << "Fallback reached from motorway at " << std::setprecision(12) << toFloating(coord.lat) << " " << toFloating(coord.lon) << ", no continue angle, " << turn_candidates.size() << " candidates, " << countValid(turn_candidates) << " valid ones."; fallbackTurnAssignmentMotorway(turn_candidates); } } else { const unsigned exiting_motorways = countExitingMotorways(turn_candidates); if (exiting_motorways == 0) { // Ending in Ramp for (auto &candidate : turn_candidates) { if (candidate.valid) { BOOST_ASSERT(detail::isRampClass(candidate.eid, node_based_graph)); candidate.instruction = TurnInstruction::SUPPRESSED(getTurnDirection(candidate.angle)); } } } else if (exiting_motorways == 1) { // normal motorway passing some ramps or mering onto another motorway if (turn_candidates.size() == 2) { BOOST_ASSERT(!detail::isRampClass(turn_candidates[1].eid, node_based_graph)); turn_candidates[1].instruction = getInstructionForObvious(turn_candidates.size(), via_edge, turn_candidates[1]); } else { // continue on the same highway bool continues = (getContinueAngle(turn_candidates) != turn_candidates[0].angle); // Normal Highway exit or merge for (auto &candidate : turn_candidates) { // ignore invalid uturns/other if (!candidate.valid) continue; if (candidate.angle == continue_angle) { if (continues) candidate.instruction = TurnInstruction::SUPPRESSED(DirectionModifier::Straight); else // TODO handle turn direction correctly candidate.instruction = {TurnType::Merge, DirectionModifier::Straight}; } else if (candidate.angle < continue_angle) { candidate.instruction = { detail::isRampClass(candidate.eid, node_based_graph) ? TurnType::Ramp : TurnType::Turn, (candidate.angle < 145) ? DirectionModifier::Right : DirectionModifier::SlightRight}; } else if (candidate.angle > continue_angle) { candidate.instruction = { detail::isRampClass(candidate.eid, node_based_graph) ? TurnType::Ramp : TurnType::Turn, (candidate.angle > 215) ? DirectionModifier::Left : DirectionModifier::SlightLeft}; } } } } // handle motorway forks else if (exiting_motorways > 1) { if (exiting_motorways == 2 && turn_candidates.size() == 2) { turn_candidates[1].instruction = getInstructionForObvious(turn_candidates.size(), via_edge, turn_candidates[1]); util::SimpleLogger().Write(logWARNING) << "Disabled U-Turn on a freeway at " << localizer(node_based_graph.GetTarget(via_edge)); turn_candidates[0].valid = false; // UTURN on the freeway } else if (exiting_motorways == 2) { // standard fork std::size_t first_valid = std::numeric_limits::max(), second_valid = std::numeric_limits::max(); for (std::size_t i = 0; i < turn_candidates.size(); ++i) { if (turn_candidates[i].valid && detail::isMotorwayClass(turn_candidates[i].eid, node_based_graph)) { if (first_valid < turn_candidates.size()) { second_valid = i; break; } else { first_valid = i; } } } assignFork(via_edge, turn_candidates[second_valid], turn_candidates[first_valid]); } else if (exiting_motorways == 3) { // triple fork std::size_t first_valid = std::numeric_limits::max(), second_valid = std::numeric_limits::max(), third_valid = std::numeric_limits::max(); for (std::size_t i = 0; i < turn_candidates.size(); ++i) { if (turn_candidates[i].valid && detail::isMotorwayClass(turn_candidates[i].eid, node_based_graph)) { if (second_valid < turn_candidates.size()) { third_valid = i; break; } else if (first_valid < turn_candidates.size()) { second_valid = i; } else { first_valid = i; } } } assignFork(via_edge, turn_candidates[third_valid], turn_candidates[second_valid], turn_candidates[first_valid]); } else { auto coord = localizer(node_based_graph.GetTarget(via_edge)); util::SimpleLogger().Write(logWARNING) << "Found motorway junction with more than " "2 exiting motorways or additional ramps at " << std::setprecision(12) << toFloating(coord.lat) << " " << toFloating(coord.lon); fallbackTurnAssignmentMotorway(turn_candidates); } } // done for more than one highway exit } #if PRINT_DEBUG_CANDIDATES std::cout << "From Motorway Candidates:\n"; for (auto tc : turn_candidates) std::cout << "\t" << tc.toString() << " " << (int)node_based_graph.GetEdgeData(tc.eid).road_classification.road_class << " name: " << node_based_graph.GetEdgeData(tc.eid).name_id << std::endl; #endif return turn_candidates; } std::vector TurnAnalysis::handleMotorwayRamp( const NodeID from, const EdgeID via_edge, std::vector turn_candidates) const { (void)from; auto num_valid_turns = countValid(turn_candidates); // ramp straight into a motorway/ramp if (turn_candidates.size() == 2 && num_valid_turns == 1) { BOOST_ASSERT(!turn_candidates[0].valid); BOOST_ASSERT(detail::isMotorwayClass(turn_candidates[1].eid, node_based_graph)); turn_candidates[1].instruction = getInstructionForObvious(turn_candidates.size(), via_edge, turn_candidates[1]); } else if (turn_candidates.size() == 3) { // merging onto a passing highway / or two ramps merging onto the same highway if (num_valid_turns == 1) { BOOST_ASSERT(!turn_candidates[0].valid); // check order of highways // 4 // 5 3 // // 6 2 // // 7 1 // 0 if (turn_candidates[1].valid) { if (detail::isMotorwayClass(turn_candidates[1].eid, node_based_graph)) { // circular order indicates a merge to the left (0-3 onto 4 if (angularDeviation(turn_candidates[1].angle, STRAIGHT_ANGLE) < NARROW_TURN_ANGLE) turn_candidates[1].instruction = {TurnType::Merge, DirectionModifier::SlightLeft}; else // fallback turn_candidates[1].instruction = { TurnType::Merge, getTurnDirection(turn_candidates[1].angle)}; } else // passing by the end of a motorway turn_candidates[1].instruction = getInstructionForObvious( turn_candidates.size(), via_edge, turn_candidates[1]); } else { BOOST_ASSERT(turn_candidates[2].valid); if (detail::isMotorwayClass(turn_candidates[2].eid, node_based_graph)) { // circular order (5-0) onto 4 if (angularDeviation(turn_candidates[2].angle, STRAIGHT_ANGLE) < NARROW_TURN_ANGLE) turn_candidates[2].instruction = {TurnType::Merge, DirectionModifier::SlightRight}; else // fallback turn_candidates[2].instruction = { TurnType::Merge, getTurnDirection(turn_candidates[2].angle)}; } else // passing the end of a highway turn_candidates[1].instruction = getInstructionForObvious( turn_candidates.size(), via_edge, turn_candidates[1]); } } else { BOOST_ASSERT(num_valid_turns == 2); // UTurn on ramps is not possible BOOST_ASSERT(!turn_candidates[0].valid); BOOST_ASSERT(turn_candidates[1].valid); BOOST_ASSERT(turn_candidates[2].valid); // two motorways starting at end of ramp (fork) // M M // \ / // | // R if (detail::isMotorwayClass(turn_candidates[1].eid, node_based_graph) && detail::isMotorwayClass(turn_candidates[2].eid, node_based_graph)) { assignFork(via_edge, turn_candidates[2], turn_candidates[1]); } else { // continued ramp passing motorway entry // M R // M R // | / // R if (detail::isMotorwayClass(node_based_graph.GetEdgeData(turn_candidates[1].eid) .road_classification.road_class)) { turn_candidates[1].instruction = {TurnType::Merge, DirectionModifier::SlightRight}; turn_candidates[2].instruction = {TurnType::Fork, DirectionModifier::SlightLeft}; } else { turn_candidates[1].instruction = {TurnType::Fork, DirectionModifier::SlightRight}; turn_candidates[2].instruction = {TurnType::Merge, DirectionModifier::SlightLeft}; } } } } // On - Off Ramp on passing Motorway, Ramp onto Fork(?) else if (turn_candidates.size() == 4) { bool passed_highway_entry = false; for (auto &candidate : turn_candidates) { const auto &edge_data = node_based_graph.GetEdgeData(candidate.eid); if (!candidate.valid && detail::isMotorwayClass(edge_data.road_classification.road_class)) { passed_highway_entry = true; } else if (detail::isMotorwayClass(edge_data.road_classification.road_class)) { candidate.instruction = {TurnType::Merge, passed_highway_entry ? DirectionModifier::SlightRight : DirectionModifier::SlightLeft}; } else { BOOST_ASSERT(isRampClass(edge_data.road_classification.road_class)); candidate.instruction = {TurnType::Ramp, getTurnDirection(candidate.angle)}; } } } else { // FALLBACK, hopefully this should never been reached util::SimpleLogger().Write(logWARNING) << "Reached fallback on motorway ramp with " << turn_candidates.size() << " candidates and " << countValid(turn_candidates) << " valid turns."; fallbackTurnAssignmentMotorway(turn_candidates); } #if PRINT_DEBUG_CANDIDATES std::cout << "Onto Motorway Candidates:\n"; for (auto tc : turn_candidates) std::cout << "\t" << tc.toString() << " " << (int)node_based_graph.GetEdgeData(tc.eid).road_classification.road_class << " name: " << node_based_graph.GetEdgeData(tc.eid).name_id << std::endl; #endif return turn_candidates; } std::vector TurnAnalysis::handleMotorwayJunction( const NodeID from, const EdgeID via_edge, std::vector turn_candidates) const { (void)from; // BOOST_ASSERT(!turn_candidates[0].valid); //This fails due to @themarex handling of dead end // streets const auto &in_data = node_based_graph.GetEdgeData(via_edge); // coming from motorway if (detail::isMotorwayClass(in_data.road_classification.road_class)) { return handleFromMotorway(from, via_edge, std::move(turn_candidates)); } else // coming from a ramp { return handleMotorwayRamp(from, via_edge, std::move(turn_candidates)); // ramp merging straight onto motorway } } bool TurnAnalysis::isMotorwayJunction(const NodeID from, const EdgeID via_edge, const std::vector &turn_candidates) const { (void)from; bool has_motorway = false; bool has_normal_roads = false; for (const auto &candidate : turn_candidates) { const auto &out_data = node_based_graph.GetEdgeData(candidate.eid); // not merging or forking? if ((angularDeviation(candidate.angle, 0) > 35 && angularDeviation(candidate.angle, 180) > 35) || (candidate.valid && angularDeviation(candidate.angle, 0) < 35)) return false; else if (out_data.road_classification.road_class == FunctionalRoadClass::MOTORWAY || out_data.road_classification.road_class == FunctionalRoadClass::TRUNK) { if (candidate.valid) has_motorway = true; } else if (!isRampClass(out_data.road_classification.road_class)) has_normal_roads = true; } if (has_normal_roads) return false; const auto &in_data = node_based_graph.GetEdgeData(via_edge); return has_motorway || in_data.road_classification.road_class == FunctionalRoadClass::MOTORWAY || in_data.road_classification.road_class == FunctionalRoadClass::TRUNK; } TurnType TurnAnalysis::findBasicTurnType(const EdgeID via_edge, const TurnCandidate &candidate) const { const auto &in_data = node_based_graph.GetEdgeData(via_edge); const auto &out_data = node_based_graph.GetEdgeData(candidate.eid); bool on_ramp = isRampClass(in_data.road_classification.road_class); bool onto_ramp = isRampClass(out_data.road_classification.road_class); if (!on_ramp && onto_ramp) return TurnType::Ramp; if (in_data.name_id == out_data.name_id && in_data.name_id != INVALID_NAME_ID) { return TurnType::Continue; } return TurnType::Turn; } TurnInstruction TurnAnalysis::getInstructionForObvious(const std::size_t num_candidates, const EdgeID via_edge, const TurnCandidate &candidate) const { const auto type = findBasicTurnType(via_edge, candidate); if (type == TurnType::Ramp) { return {TurnType::Ramp, getTurnDirection(candidate.angle)}; } if (angularDeviation(candidate.angle, 0) < 0.01) { return {TurnType::Turn, DirectionModifier::UTurn}; } if (type == TurnType::Turn) { const auto &in_data = node_based_graph.GetEdgeData(via_edge); const auto &out_data = node_based_graph.GetEdgeData(candidate.eid); if (in_data.name_id != out_data.name_id) return {TurnType::NewName, getTurnDirection(candidate.angle)}; else return {TurnType::Suppressed, getTurnDirection(candidate.angle)}; } BOOST_ASSERT(type == TurnType::Continue); if (num_candidates > 2) { return {TurnType::Suppressed, getTurnDirection(candidate.angle)}; } else { return {TurnType::NoTurn, getTurnDirection(candidate.angle)}; } } std::vector TurnAnalysis::handleOneWayTurn( const NodeID from, const EdgeID via_edge, std::vector turn_candidates) const { BOOST_ASSERT(turn_candidates[0].angle < 0.001); (void)from, (void)via_edge; #if PRINT_DEBUG_CANDIDATES std::cout << "Basic (one) Turn Candidates:\n"; for (auto tc : turn_candidates) { std::cout << "\t" << tc.toString() << " "; if (tc.eid != SPECIAL_EDGEID) { std::cout << (int)node_based_graph.GetEdgeData(tc.eid).road_classification.road_class << "name: " << node_based_graph.GetEdgeData(tc.eid).name_id << std::endl; } else { std::cout << " dead end" << std::endl; } } #endif return turn_candidates; } std::vector TurnAnalysis::handleTwoWayTurn( const NodeID from, const EdgeID via_edge, std::vector turn_candidates) const { BOOST_ASSERT(turn_candidates[0].angle < 0.001); (void)from; turn_candidates[1].instruction = getInstructionForObvious(turn_candidates.size(), via_edge, turn_candidates[1]); if (turn_candidates[1].instruction.type == TurnType::Suppressed) turn_candidates[1].instruction.type = TurnType::NoTurn; #if PRINT_DEBUG_CANDIDATES std::cout << "Basic Two Turns Candidates:\n"; for (auto tc : turn_candidates) std::cout << "\t" << tc.toString() << " " << (int)node_based_graph.GetEdgeData(tc.eid).road_classification.road_class << " name: " << node_based_graph.GetEdgeData(tc.eid).name_id << std::endl; #endif return turn_candidates; } std::vector TurnAnalysis::handleThreeWayTurn( const NodeID from, const EdgeID via_edge, std::vector turn_candidates) const { BOOST_ASSERT(turn_candidates[0].angle < 0.001); (void)from; const auto isObviousOfTwo = [](const TurnCandidate turn, const TurnCandidate other) { return (angularDeviation(turn.angle, STRAIGHT_ANGLE) < NARROW_TURN_ANGLE && angularDeviation(other.angle, STRAIGHT_ANGLE) > 85) || (angularDeviation(other.angle, STRAIGHT_ANGLE) / angularDeviation(turn.angle, STRAIGHT_ANGLE) > 1.4); }; /* Two nearly straight turns -> FORK OOOOOOO / IIIIII \ OOOOOOO */ if (angularDeviation(turn_candidates[1].angle, STRAIGHT_ANGLE) < NARROW_TURN_ANGLE && angularDeviation(turn_candidates[2].angle, STRAIGHT_ANGLE) < NARROW_TURN_ANGLE) { if (turn_candidates[1].valid && turn_candidates[2].valid) { assignFork(via_edge, turn_candidates[2], turn_candidates[1]); } else { if (turn_candidates[1].valid) turn_candidates[1].instruction = getInstructionForObvious(turn_candidates.size(), via_edge, turn_candidates[1]); if (turn_candidates[2].valid) turn_candidates[2].instruction = getInstructionForObvious(turn_candidates.size(), via_edge, turn_candidates[2]); } } /* T Intersection OOOOOOO T OOOOOOOO I I I */ else if (angularDeviation(turn_candidates[1].angle, 90) < NARROW_TURN_ANGLE && angularDeviation(turn_candidates[2].angle, 270) < NARROW_TURN_ANGLE && angularDeviation(turn_candidates[1].angle, turn_candidates[2].angle) > NARROW_TURN_ANGLE) { if (turn_candidates[1].valid) { if (TurnType::Ramp != findBasicTurnType(via_edge, turn_candidates[1])) turn_candidates[1].instruction = {TurnType::EndOfRoad, DirectionModifier::Right}; else turn_candidates[1].instruction = {TurnType::Ramp, DirectionModifier::Right}; } if (turn_candidates[2].valid) { if (TurnType::Ramp != findBasicTurnType(via_edge, turn_candidates[2])) turn_candidates[2].instruction = {TurnType::EndOfRoad, DirectionModifier::Left}; else turn_candidates[2].instruction = {TurnType::Ramp, DirectionModifier::Left}; } } /* T Intersection, Cross left O O O IIIIIIII - OOOOOOOOOO */ else if (angularDeviation(turn_candidates[1].angle, STRAIGHT_ANGLE) < NARROW_TURN_ANGLE && angularDeviation(turn_candidates[2].angle, 270) < NARROW_TURN_ANGLE && angularDeviation(turn_candidates[1].angle, turn_candidates[2].angle) > NARROW_TURN_ANGLE) { if (turn_candidates[1].valid) { if (TurnType::Ramp != findBasicTurnType(via_edge, turn_candidates[1])) turn_candidates[1].instruction = getInstructionForObvious(turn_candidates.size(), via_edge, turn_candidates[1]); else turn_candidates[1].instruction = {TurnType::Ramp, DirectionModifier::Straight}; } if (turn_candidates[2].valid) { turn_candidates[2].instruction = {findBasicTurnType(via_edge, turn_candidates[2]), DirectionModifier::Left}; } } /* T Intersection, Cross right IIIIIIII T OOOOOOOOOO O O O */ else if (angularDeviation(turn_candidates[2].angle, STRAIGHT_ANGLE) < NARROW_TURN_ANGLE && angularDeviation(turn_candidates[1].angle, 90) < NARROW_TURN_ANGLE && angularDeviation(turn_candidates[1].angle, turn_candidates[2].angle) > NARROW_TURN_ANGLE) { if (turn_candidates[2].valid) turn_candidates[2].instruction = getInstructionForObvious(turn_candidates.size(), via_edge, turn_candidates[2]); if (turn_candidates[1].valid) turn_candidates[1].instruction = {findBasicTurnType(via_edge, turn_candidates[1]), DirectionModifier::Right}; } // merge onto a through street else if (INVALID_NAME_ID != node_based_graph.GetEdgeData(turn_candidates[1].eid).name_id && node_based_graph.GetEdgeData(turn_candidates[1].eid).name_id == node_based_graph.GetEdgeData(turn_candidates[2].eid).name_id) { const auto findTurn = [isObviousOfTwo](const TurnCandidate turn, const TurnCandidate other) -> TurnInstruction { return {isObviousOfTwo(turn, other) ? TurnType::Merge : TurnType::Turn, getTurnDirection(turn.angle)}; }; turn_candidates[1].instruction = findTurn(turn_candidates[1], turn_candidates[2]); turn_candidates[2].instruction = findTurn(turn_candidates[2], turn_candidates[1]); } // other street merges from the left else if (INVALID_NAME_ID != node_based_graph.GetEdgeData(via_edge).name_id && node_based_graph.GetEdgeData(via_edge).name_id == node_based_graph.GetEdgeData(turn_candidates[1].eid).name_id) { if (isObviousOfTwo(turn_candidates[1], turn_candidates[2])) { turn_candidates[1].instruction = TurnInstruction::SUPPRESSED(DirectionModifier::Straight); } else { turn_candidates[1].instruction = {TurnType::Continue, getTurnDirection(turn_candidates[1].angle)}; } turn_candidates[2].instruction = {TurnType::Turn, getTurnDirection(turn_candidates[2].angle)}; } // other street merges from the right else if (INVALID_NAME_ID != node_based_graph.GetEdgeData(via_edge).name_id && node_based_graph.GetEdgeData(via_edge).name_id == node_based_graph.GetEdgeData(turn_candidates[2].eid).name_id) { if (isObviousOfTwo(turn_candidates[2], turn_candidates[1])) { turn_candidates[2].instruction = TurnInstruction::SUPPRESSED(DirectionModifier::Straight); } else { turn_candidates[2].instruction = {TurnType::Continue, getTurnDirection(turn_candidates[2].angle)}; } turn_candidates[1].instruction = {TurnType::Turn, getTurnDirection(turn_candidates[1].angle)}; } else { const unsigned in_name_id = node_based_graph.GetEdgeData(via_edge).name_id; const unsigned out_names[2] = { node_based_graph.GetEdgeData(turn_candidates[1].eid).name_id, node_based_graph.GetEdgeData(turn_candidates[2].eid).name_id}; if (isObviousOfTwo(turn_candidates[1], turn_candidates[2])) { turn_candidates[1].instruction = { (in_name_id != INVALID_NAME_ID || out_names[0] != INVALID_NAME_ID) ? TurnType::NewName : TurnType::NoTurn, getTurnDirection(turn_candidates[1].angle)}; } else { turn_candidates[1].instruction = {TurnType::Turn, getTurnDirection(turn_candidates[1].angle)}; } if (isObviousOfTwo(turn_candidates[2], turn_candidates[1])) { turn_candidates[2].instruction = { (in_name_id != INVALID_NAME_ID || out_names[1] != INVALID_NAME_ID) ? TurnType::NewName : TurnType::NoTurn, getTurnDirection(turn_candidates[2].angle)}; } else { turn_candidates[2].instruction = {TurnType::Turn, getTurnDirection(turn_candidates[2].angle)}; } } // unnamed intersections or basic three way turn // remain at basic turns // TODO handle obviousness, Handle Merges #if PRINT_DEBUG_CANDIDATES std::cout << "Basic Three Turn Candidates:\n"; for (auto tc : turn_candidates) std::cout << "\t" << tc.toString() << " " << (int)node_based_graph.GetEdgeData(tc.eid).road_classification.road_class << " name: " << node_based_graph.GetEdgeData(tc.eid).name_id << std::endl; #endif return turn_candidates; } void TurnAnalysis::handleDistinctConflict(const EdgeID via_edge, TurnCandidate &left, TurnCandidate &right) const { // single turn of both is valid (don't change the valid one) // or multiple identical angles -> bad OSM intersection if ((!left.valid || !right.valid) || (left.angle == right.angle)) { if (left.valid) left.instruction = {findBasicTurnType(via_edge, left), getTurnDirection(left.angle)}; if (right.valid) right.instruction = {findBasicTurnType(via_edge, right), getTurnDirection(right.angle)}; return; } if (getTurnDirection(left.angle) == DirectionModifier::Straight || getTurnDirection(left.angle) == DirectionModifier::SlightLeft || getTurnDirection(right.angle) == DirectionModifier::SlightRight) assignFork(via_edge, left, right); const auto left_type = findBasicTurnType(via_edge, left); const auto right_type = findBasicTurnType(via_edge, right); // Two Right Turns if (angularDeviation(left.angle, 90) < MAXIMAL_ALLOWED_NO_TURN_DEVIATION) { // Keep left perfect, shift right left.instruction = {left_type, DirectionModifier::Right}; right.instruction = {right_type, DirectionModifier::SharpRight}; return; } if (angularDeviation(right.angle, 90) < MAXIMAL_ALLOWED_NO_TURN_DEVIATION) { // Keep Right perfect, shift left left.instruction = {left_type, DirectionModifier::SlightRight}; right.instruction = {right_type, DirectionModifier::Right}; return; } // Two Right Turns if (angularDeviation(left.angle, 270) < MAXIMAL_ALLOWED_NO_TURN_DEVIATION) { // Keep left perfect, shift right left.instruction = {left_type, DirectionModifier::Left}; right.instruction = {right_type, DirectionModifier::SlightLeft}; return; } if (angularDeviation(right.angle, 270) < MAXIMAL_ALLOWED_NO_TURN_DEVIATION) { // Keep Right perfect, shift left left.instruction = {left_type, DirectionModifier::SharpLeft}; right.instruction = {right_type, DirectionModifier::Left}; return; } // Both turns? if (TurnType::Ramp != left_type && TurnType::Ramp != right_type) { if (left.angle < STRAIGHT_ANGLE) { left.instruction = {TurnType::FirstTurn, getTurnDirection(left.angle)}; right.instruction = {TurnType::SecondTurn, getTurnDirection(right.angle)}; } else { left.instruction = {TurnType::SecondTurn, getTurnDirection(left.angle)}; right.instruction = {TurnType::FirstTurn, getTurnDirection(right.angle)}; } return; } // Shift the lesser penalty if (getTurnDirection(left.angle) == DirectionModifier::SharpLeft) { left.instruction = {left_type, DirectionModifier::SharpLeft}; right.instruction = {right_type, DirectionModifier::Left}; return; } if (getTurnDirection(right.angle) == DirectionModifier::SharpRight) { left.instruction = {left_type, DirectionModifier::Right}; right.instruction = {right_type, DirectionModifier::SharpRight}; return; } if (getTurnDirection(left.angle) == DirectionModifier::Right) { if (angularDeviation(left.angle, 90) > angularDeviation(right.angle, 90)) { left.instruction = {left_type, DirectionModifier::SlightRight}; right.instruction = {right_type, DirectionModifier::Right}; } else { left.instruction = {left_type, DirectionModifier::Right}; right.instruction = {right_type, DirectionModifier::SharpRight}; } } else { if (angularDeviation(left.angle, 270) > angularDeviation(right.angle, 270)) { left.instruction = {left_type, DirectionModifier::SharpLeft}; right.instruction = {right_type, DirectionModifier::Left}; } else { left.instruction = {left_type, DirectionModifier::Left}; right.instruction = {right_type, DirectionModifier::SlightLeft}; } } } std::vector TurnAnalysis::handleComplexTurn( const NodeID from, const EdgeID via_edge, std::vector turn_candidates) const { (void)from; // FIXME unused static int fallback_count = 0; const std::size_t obvious_index = findObviousTurn(via_edge, turn_candidates); const auto fork_range = findFork(via_edge, turn_candidates); std::size_t straightmost_turn = 0; double straightmost_deviation = 180; for (std::size_t i = 0; i < turn_candidates.size(); ++i) { const double deviation = angularDeviation(turn_candidates[i].angle, STRAIGHT_ANGLE); if (deviation < straightmost_deviation) { straightmost_deviation = deviation; straightmost_turn = i; } } if (obvious_index != 0) { turn_candidates[obvious_index].instruction = getInstructionForObvious( turn_candidates.size(), via_edge, turn_candidates[obvious_index]); // assign left/right turns turn_candidates = assignLeftTurns(via_edge, std::move(turn_candidates), obvious_index + 1); turn_candidates = assignRightTurns(via_edge, std::move(turn_candidates), obvious_index); } else if (fork_range.first != 0 && fork_range.second - fork_range.first <= 2) // found fork { if (fork_range.second - fork_range.first == 1) { assignFork(via_edge, turn_candidates[fork_range.second], turn_candidates[fork_range.first]); } else if (fork_range.second - fork_range.second == 2) { assignFork(via_edge, turn_candidates[fork_range.second], turn_candidates[fork_range.first + 1], turn_candidates[fork_range.first]); } // assign left/right turns turn_candidates = assignLeftTurns(via_edge, std::move(turn_candidates), fork_range.second + 1); turn_candidates = assignRightTurns(via_edge, std::move(turn_candidates), fork_range.first); } else if (straightmost_deviation < FUZZY_ANGLE_DIFFERENCE && !turn_candidates[straightmost_turn].valid) { // invalid straight turn turn_candidates = assignLeftTurns(via_edge, std::move(turn_candidates), straightmost_turn + 1); turn_candidates = assignRightTurns(via_edge, std::move(turn_candidates), straightmost_turn); } // no straight turn else if (turn_candidates[straightmost_turn].angle > 180) { // at most three turns on either side turn_candidates = assignLeftTurns(via_edge, std::move(turn_candidates), straightmost_turn); turn_candidates = assignRightTurns(via_edge, std::move(turn_candidates), straightmost_turn); } else if (turn_candidates[straightmost_turn].angle < 180) { turn_candidates = assignLeftTurns(via_edge, std::move(turn_candidates), straightmost_turn + 1); turn_candidates = assignRightTurns(via_edge, std::move(turn_candidates), straightmost_turn + 1); } else { if (fallback_count++ < 10) { const auto coord = localizer(node_based_graph.GetTarget(via_edge)); util::SimpleLogger().Write(logWARNING) << "Resolved to keep fallback on complex turn assignment at " << std::setprecision(12) << toFloating(coord.lat) << " " << toFloating(coord.lon) << "Straightmost: " << straightmost_turn; ; for (const auto &candidate : turn_candidates) { const auto &out_data = node_based_graph.GetEdgeData(candidate.eid); util::SimpleLogger().Write(logWARNING) << "Candidate: " << candidate.toString() << " Name: " << out_data.name_id << " Road Class: " << (int)out_data.road_classification.road_class << " At: " << localizer(node_based_graph.GetTarget(candidate.eid)); } } } #if PRINT_DEBUG_CANDIDATES std::cout << "Basic Complex Turn Candidates:\n"; for (auto tc : turn_candidates) std::cout << "\t" << tc.toString() << " " << (int)node_based_graph.GetEdgeData(tc.eid).road_classification.road_class << " name: " << node_based_graph.GetEdgeData(tc.eid).name_id << std::endl; #endif return turn_candidates; } std::vector TurnAnalysis::setTurnTypes( const NodeID from, const EdgeID via_edge, std::vector turn_candidates) const { NodeID turn_node = node_based_graph.GetTarget(via_edge); for (auto &candidate : turn_candidates) { if (!candidate.valid) continue; const EdgeID onto_edge = candidate.eid; const NodeID to_node = node_based_graph.GetTarget(onto_edge); auto turn = AnalyzeTurn(from, via_edge, turn_node, onto_edge, to_node, candidate.angle); auto confidence = getTurnConfidence(candidate.angle, turn); candidate.instruction = turn; candidate.confidence = confidence; } return turn_candidates; } // a // | // | // v // For an intersection from_node --via_edi--> turn_node ----> c // ^ // | // | // b // This functions returns _all_ turns as if the graph was undirected. // That means we not only get (from_node, turn_node, c) in the above example // but also (from_node, turn_node, a), (from_node, turn_node, b). These turns are // marked as invalid and only needed for intersection classification. std::vector TurnAnalysis::getTurnCandidates(const NodeID from_node, const EdgeID via_eid) const { std::vector turn_candidates; const NodeID turn_node = node_based_graph.GetTarget(via_eid); const NodeID only_restriction_to_node = restriction_map.CheckForEmanatingIsOnlyTurn(from_node, turn_node); const bool is_barrier_node = barrier_nodes.find(turn_node) != barrier_nodes.end(); for (const EdgeID onto_edge : node_based_graph.GetAdjacentEdgeRange(turn_node)) { BOOST_ASSERT( onto_edge != SPECIAL_EDGEID ); const NodeID to_node = node_based_graph.GetTarget(onto_edge); bool turn_is_valid = // reverse edges are never valid turns because the resulting turn would look like this: // from_node --via_edge--> turn_node <--onto_edge-- to_node // however we need this for capture intersection shape for incoming one-ways !node_based_graph.GetEdgeData(onto_edge).reversed && // we are not turning over a barrier (!is_barrier_node || from_node == to_node) && // We are at an only_-restriction but not at the right turn. (only_restriction_to_node == SPECIAL_NODEID || to_node == only_restriction_to_node) && // the turn is not restricted !restriction_map.CheckIfTurnIsRestricted(from_node, turn_node, to_node); auto angle = 0.; if (from_node == to_node) { if (turn_is_valid && !is_barrier_node) { // we only add u-turns for dead-end streets. if (node_based_graph.GetOutDegree(turn_node) > 1) { auto number_of_emmiting_bidirectional_edges = 0; for (auto edge : node_based_graph.GetAdjacentEdgeRange(turn_node)) { auto target = node_based_graph.GetTarget(edge); auto reverse_edge = node_based_graph.FindEdge(target, turn_node); BOOST_ASSERT(reverse_edge != SPECIAL_EDGEID); if (!node_based_graph.GetEdgeData(reverse_edge).reversed) { ++number_of_emmiting_bidirectional_edges; } } // is a dead-end turn_is_valid = number_of_emmiting_bidirectional_edges <= 1; } } BOOST_ASSERT(angle >= 0. && angle < std::numeric_limits::epsilon()); } else { // unpack first node of second segment if packed const auto first_coordinate = getRepresentativeCoordinate( from_node, turn_node, via_eid, INVERT, compressed_edge_container, node_info_list); const auto third_coordinate = getRepresentativeCoordinate( turn_node, to_node, onto_edge, !INVERT, compressed_edge_container, node_info_list); angle = util::coordinate_calculation::computeAngle( first_coordinate, node_info_list[turn_node], third_coordinate); } turn_candidates.push_back( {onto_edge, turn_is_valid, angle, {TurnType::Invalid, DirectionModifier::UTurn}, 0}); } const auto ByAngle = [](const TurnCandidate &first, const TurnCandidate second) { return first.angle < second.angle; }; std::sort(std::begin(turn_candidates), std::end(turn_candidates), ByAngle); BOOST_ASSERT(turn_candidates[0].angle >= 0. && turn_candidates[0].angle < std::numeric_limits::epsilon()); return mergeSegregatedRoads(from_node, via_eid, std::move(turn_candidates)); } std::vector TurnAnalysis::mergeSegregatedRoads( const NodeID from_node, const EdgeID via_eid, std::vector turn_candidates) const { (void)from_node; // FIXME (void)via_eid; // FIXME #define PRINT_SEGREGATION_INFO 0 #if PRINT_SEGREGATION_INFO std::cout << "Input:\n"; for (const auto &candidate : turn_candidates) std::cout << "\t" << candidate.toString() << std::endl; #endif const auto getLeft = [&](std::size_t index) { return (index + 1) % turn_candidates.size(); }; (void)getLeft; // FIXME const auto getRight = [&](std::size_t index) { return (index + turn_candidates.size() - 1) % turn_candidates.size(); }; const auto mergable = [&](std::size_t first, std::size_t second) -> bool { const auto &first_data = node_based_graph.GetEdgeData(turn_candidates[first].eid); const auto &second_data = node_based_graph.GetEdgeData(turn_candidates[second].eid); #if PRINT_SEGREGATION_INFO std::cout << "First: " << first_data.name_id << " " << first_data.travel_mode << " " << first_data.road_classification.road_class << " " << turn_candidates[first].angle << " " << first_data.reversed << "\n"; std::cout << "Second: " << second_data.name_id << " " << second_data.travel_mode << " " << second_data.road_classification.road_class << " " << turn_candidates[second].angle << " " << second_data.reversed << std::endl; std::cout << "Deviation: " << angularDeviation(turn_candidates[first].angle, turn_candidates[second].angle) << std::endl; #endif return first_data.name_id != INVALID_NAME_ID && first_data.name_id == second_data.name_id && !first_data.roundabout && !second_data.roundabout && first_data.travel_mode == second_data.travel_mode && first_data.road_classification == second_data.road_classification && // compatible threshold angularDeviation(turn_candidates[first].angle, turn_candidates[second].angle) < 60 && first_data.reversed != second_data.reversed; }; const auto merge = [](const TurnCandidate &first, const TurnCandidate &second) -> TurnCandidate { if (!first.valid) { TurnCandidate result = second; result.angle = (first.angle + second.angle) / 2; if (first.angle - second.angle > 180) result.angle += 180; if (result.angle > 360) result.angle -= 360; #if PRINT_SEGREGATION_INFO std::cout << "Merged: " << first.angle << " and " << second.angle << " to " << result.angle << std::endl; #endif return result; } else { BOOST_ASSERT(!second.valid); TurnCandidate result = first; result.angle = (first.angle + second.angle) / 2; if (first.angle - second.angle > 180) result.angle += 180; if (result.angle > 360) result.angle -= 360; #if PRINT_SEGREGATION_INFO std::cout << "Merged: " << first.angle << " and " << second.angle << " to " << result.angle << std::endl; #endif return result; } }; if (turn_candidates.size() == 1) return turn_candidates; if (mergable(0, turn_candidates.size() - 1)) { // std::cout << "First merge" << std::endl; const double correction_factor = (360 - turn_candidates[turn_candidates.size() - 1].angle) / 2; for (std::size_t i = 1; i + 1 < turn_candidates.size(); ++i) turn_candidates[i].angle += correction_factor; turn_candidates[0] = merge(turn_candidates.front(),turn_candidates.back()); turn_candidates[0].angle = 0; turn_candidates.pop_back(); } else if (mergable(0, 1)) { // std::cout << "First merge" << std::endl; const double correction_factor = (turn_candidates[1].angle) / 2; for (std::size_t i = 2; i < turn_candidates.size(); ++i) turn_candidates[i].angle += correction_factor; turn_candidates[0] = merge(turn_candidates[0],turn_candidates[1]); turn_candidates[0].angle = 0; turn_candidates.erase(turn_candidates.begin() + 1); } for (std::size_t index = 2; index < turn_candidates.size(); ++index) { if (mergable(index, getRight(index))) { turn_candidates[getRight(index)] = merge(turn_candidates[getRight(index)], turn_candidates[index]); turn_candidates.erase(turn_candidates.begin() + index); --index; } } const auto ByAngle = [](const TurnCandidate &first, const TurnCandidate second) { return first.angle < second.angle; }; std::sort(std::begin(turn_candidates), std::end(turn_candidates), ByAngle); #if PRINT_SEGREGATION_INFO std::cout << "Result:\n"; for (const auto &candidate : turn_candidates) std::cout << "\t" << candidate.toString() << std::endl; #endif return turn_candidates; } // node_u -- (edge_1) --> node_v -- (edge_2) --> node_w TurnInstruction TurnAnalysis::AnalyzeTurn(const NodeID node_u, const EdgeID edge1, const NodeID node_v, const EdgeID edge2, const NodeID node_w, const double angle) const { (void)node_v; const EdgeData &data1 = node_based_graph.GetEdgeData(edge1); const EdgeData &data2 = node_based_graph.GetEdgeData(edge2); bool from_ramp = isRampClass(data1.road_classification.road_class); bool to_ramp = isRampClass(data2.road_classification.road_class); if (node_u == node_w) { return {TurnType::Turn, DirectionModifier::UTurn}; } if (!from_ramp && to_ramp) { return {TurnType::Ramp, getTurnDirection(angle)}; } // assign a designated turn angle instruction purely based on the angle return {TurnType::Turn, getTurnDirection(angle)}; } std::vector TurnAnalysis::handleConflicts( const NodeID from, const EdgeID via_edge, std::vector turn_candidates) const { (void)from; // FIXME (void)via_edge; // FIXME const auto isConflict = [](const TurnCandidate &left, const TurnCandidate &right) { // most obvious, same instructions conflict if (left.instruction == right.instruction) return true; return left.instruction.direction_modifier != DirectionModifier::UTurn && left.instruction.direction_modifier == right.instruction.direction_modifier; }; (void)isConflict; // FIXME #if PRINT_DEBUG_CANDIDATES std::cout << "Post Conflict Resolution Candidates:\n"; for (auto tc : turn_candidates) std::cout << "\t" << tc.toString() << " " << (int)node_based_graph.GetEdgeData(tc.eid).road_classification.road_class << " name: " << node_based_graph.GetEdgeData(tc.eid).name_id << std::endl; #endif return turn_candidates; } void TurnAnalysis::assignFork(const EdgeID via_edge, TurnCandidate &left, TurnCandidate &right) const { const auto &in_data = node_based_graph.GetEdgeData(via_edge); const bool low_priority_left = isLowPriorityRoadClass( node_based_graph.GetEdgeData(left.eid).road_classification.road_class); const bool low_priority_right = isLowPriorityRoadClass( node_based_graph.GetEdgeData(right.eid).road_classification.road_class); { // left fork const auto &out_data = node_based_graph.GetEdgeData(left.eid); if ((angularDeviation(left.angle, STRAIGHT_ANGLE) < MAXIMAL_ALLOWED_NO_TURN_DEVIATION && angularDeviation(right.angle, STRAIGHT_ANGLE) > FUZZY_ANGLE_DIFFERENCE)) { if (requiresAnnouncement(in_data, out_data)) { if (low_priority_right && !low_priority_left) left.instruction = getInstructionForObvious(3, via_edge, left); else { if (low_priority_left && !low_priority_right) left.instruction = {TurnType::Turn, DirectionModifier::SlightLeft}; else left.instruction = {TurnType::Fork, DirectionModifier::SlightLeft}; } } else { left.instruction = {TurnType::Suppressed, DirectionModifier::Straight}; } } else { if (low_priority_right && !low_priority_left) left.instruction = {TurnType::Suppressed, DirectionModifier::SlightLeft}; else { if (low_priority_left && !low_priority_right) left.instruction = {TurnType::Turn, DirectionModifier::SlightLeft}; else left.instruction = {TurnType::Fork, DirectionModifier::SlightLeft}; } } } { // right fork const auto &out_data = node_based_graph.GetEdgeData(right.eid); if (angularDeviation(right.angle, STRAIGHT_ANGLE) < MAXIMAL_ALLOWED_NO_TURN_DEVIATION && angularDeviation(left.angle, STRAIGHT_ANGLE) > FUZZY_ANGLE_DIFFERENCE) { if (requiresAnnouncement(in_data, out_data)) { if (low_priority_left && !low_priority_right) right.instruction = getInstructionForObvious(3, via_edge, right); else { if (low_priority_right && !low_priority_left) right.instruction = {TurnType::Turn, DirectionModifier::SlightRight}; else right.instruction = {TurnType::Fork, DirectionModifier::SlightRight}; } } else { right.instruction = {TurnType::Suppressed, DirectionModifier::Straight}; } } else { if (low_priority_left && !low_priority_right) right.instruction = {TurnType::Suppressed, DirectionModifier::SlightLeft}; else { if (low_priority_right && !low_priority_left) right.instruction = {TurnType::Turn, DirectionModifier::SlightRight}; else right.instruction = {TurnType::Fork, DirectionModifier::SlightRight}; } } } } void TurnAnalysis::assignFork(const EdgeID via_edge, TurnCandidate &left, TurnCandidate ¢er, TurnCandidate &right) const { // TODO handle low priority road classes in a reasonable way if (left.valid && center.valid && right.valid) { left.instruction = {TurnType::Fork, DirectionModifier::SlightLeft}; if (angularDeviation(center.angle, 180) < MAXIMAL_ALLOWED_NO_TURN_DEVIATION) { const auto &in_data = node_based_graph.GetEdgeData(via_edge); const auto &out_data = node_based_graph.GetEdgeData(center.eid); if (requiresAnnouncement(in_data, out_data)) { center.instruction = {TurnType::Fork, DirectionModifier::Straight}; } else { center.instruction = {TurnType::Suppressed, DirectionModifier::Straight}; } } else { center.instruction = {TurnType::Fork, DirectionModifier::Straight}; } right.instruction = {TurnType::Fork, DirectionModifier::SlightRight}; } else if (left.valid) { if (right.valid) assignFork(via_edge, left, right); else if (center.valid) assignFork(via_edge, left, center); else left.instruction = {findBasicTurnType(via_edge, left), getTurnDirection(left.angle)}; } else if (right.valid) { if (center.valid) assignFork(via_edge, center, right); else right.instruction = {findBasicTurnType(via_edge, right), getTurnDirection(right.angle)}; } else { if (center.valid) center.instruction = {findBasicTurnType(via_edge, center), getTurnDirection(center.angle)}; } } std::size_t TurnAnalysis::findObviousTurn(const EdgeID via_edge, const std::vector &turn_candidates) const { // no obvious candidate if (turn_candidates.size() == 1) return 0; // a single non u-turn is obvious if (turn_candidates.size() == 2) return 1; // at least three candidates std::size_t best = 0; double best_deviation = 180; std::size_t best_continue = 0; double best_continue_deviation = 180; const EdgeData &in_data = node_based_graph.GetEdgeData(via_edge); for (std::size_t i = 1; i < turn_candidates.size(); ++i) { const double deviation = angularDeviation(turn_candidates[i].angle, STRAIGHT_ANGLE); if (turn_candidates[i].valid && deviation < best_deviation) { best_deviation = deviation; best = i; } const auto out_data = node_based_graph.GetEdgeData(turn_candidates[i].eid); if (turn_candidates[i].valid && out_data.name_id == in_data.name_id && deviation < best_continue_deviation) { best_continue_deviation = deviation; best_continue = i; } } if (best == 0) return 0; if (best_deviation >= 2 * NARROW_TURN_ANGLE) return 0; // TODO incorporate road class in decision if (best != 0 && best_deviation < MAXIMAL_ALLOWED_NO_TURN_DEVIATION) { return best; } // has no obvious continued road if (best_continue == 0 || true) { // Find left/right deviation const double left_deviation = angularDeviation( turn_candidates[(best + 1) % turn_candidates.size()].angle, STRAIGHT_ANGLE); const double right_deviation = angularDeviation(turn_candidates[best - 1].angle, STRAIGHT_ANGLE); if (best_deviation < MAXIMAL_ALLOWED_NO_TURN_DEVIATION && std::min(left_deviation, right_deviation) > FUZZY_ANGLE_DIFFERENCE) return best; // other narrow turns? if (angularDeviation(turn_candidates[best - 1].angle, STRAIGHT_ANGLE) <= FUZZY_ANGLE_DIFFERENCE) return 0; if (angularDeviation(turn_candidates[(best + 1) % turn_candidates.size()].angle, STRAIGHT_ANGLE) <= FUZZY_ANGLE_DIFFERENCE) return 0; // Well distinct turn that is nearly straight if (left_deviation / best_deviation >= DISTINCTION_RATIO && right_deviation / best_deviation >= DISTINCTION_RATIO) { return best; } } return 0; // no obvious turn } std::pair TurnAnalysis::findFork(const EdgeID via_edge, const std::vector &turn_candidates) const { std::size_t best = 0; double best_deviation = 180; // TODO handle road classes (void)via_edge; for (std::size_t i = 1; i < turn_candidates.size(); ++i) { const double deviation = angularDeviation(turn_candidates[i].angle, STRAIGHT_ANGLE); if (turn_candidates[i].valid && deviation < best_deviation) { best_deviation = deviation; best = i; } } if (best_deviation <= NARROW_TURN_ANGLE) { std::size_t left = best, right = best; while (left + 1 < turn_candidates.size() && angularDeviation(turn_candidates[left].angle, turn_candidates[left + 1].angle) < NARROW_TURN_ANGLE) ++left; while (right > 1 && angularDeviation(turn_candidates[right].angle, turn_candidates[right - 1].angle) < NARROW_TURN_ANGLE) --right; // TODO check whether 2*NARROW_TURN is too large if (right < left && angularDeviation(turn_candidates[left].angle, turn_candidates[(left + 1) % turn_candidates.size()].angle) >= 2 * NARROW_TURN_ANGLE && angularDeviation(turn_candidates[right].angle, turn_candidates[right - 1].angle) >= 2 * NARROW_TURN_ANGLE) return std::make_pair(right, left); } return std::make_pair(0llu, 0llu); } // Can only assign three turns std::vector TurnAnalysis::assignLeftTurns(const EdgeID via_edge, std::vector turn_candidates, const std::size_t starting_at) const { const auto count_valid = [&turn_candidates, starting_at]() { std::size_t count = 0; for (std::size_t i = starting_at; i < turn_candidates.size(); ++i) if (turn_candidates[i].valid) ++count; return count; }; if (starting_at == turn_candidates.size() || count_valid() == 0) return turn_candidates; // handle single turn if (turn_candidates.size() - starting_at == 1) { if (!turn_candidates[starting_at].valid) return turn_candidates; if (angularDeviation(turn_candidates[starting_at].angle, STRAIGHT_ANGLE) > NARROW_TURN_ANGLE && angularDeviation(turn_candidates[starting_at].angle, 0) > NARROW_TURN_ANGLE) { // assign left turn turn_candidates[starting_at].instruction = { findBasicTurnType(via_edge, turn_candidates[starting_at]), DirectionModifier::Left}; } else if (angularDeviation(turn_candidates[starting_at].angle, STRAIGHT_ANGLE) <= NARROW_TURN_ANGLE) { turn_candidates[starting_at].instruction = { findBasicTurnType(via_edge, turn_candidates[starting_at]), DirectionModifier::SlightLeft}; } else { turn_candidates[starting_at].instruction = { findBasicTurnType(via_edge, turn_candidates[starting_at]), DirectionModifier::SharpLeft}; } } // two turns on at the side else if (turn_candidates.size() - starting_at == 2) { const auto first_direction = getTurnDirection(turn_candidates[starting_at].angle); const auto second_direction = getTurnDirection(turn_candidates[starting_at + 1].angle); if (first_direction == second_direction) { // conflict handleDistinctConflict(via_edge, turn_candidates[starting_at + 1], turn_candidates[starting_at]); } else { turn_candidates[starting_at].instruction = { findBasicTurnType(via_edge, turn_candidates[starting_at]), first_direction}; turn_candidates[starting_at + 1].instruction = { findBasicTurnType(via_edge, turn_candidates[starting_at + 1]), second_direction}; } } else if (turn_candidates.size() - starting_at == 3) { const auto first_direction = getTurnDirection(turn_candidates[starting_at].angle); const auto second_direction = getTurnDirection(turn_candidates[starting_at + 1].angle); const auto third_direction = getTurnDirection(turn_candidates[starting_at + 2].angle); if (first_direction != second_direction && second_direction != third_direction) { // implies first != third, based on the angles and clockwise order if (turn_candidates[starting_at].valid) turn_candidates[starting_at].instruction = { findBasicTurnType(via_edge, turn_candidates[starting_at]), first_direction}; if (turn_candidates[starting_at + 1].valid) turn_candidates[starting_at + 1].instruction = { findBasicTurnType(via_edge, turn_candidates[starting_at + 1]), second_direction}; if (turn_candidates[starting_at + 2].valid) turn_candidates[starting_at + 2].instruction = { findBasicTurnType(via_edge, turn_candidates[starting_at + 2]), second_direction}; } else if (2 >= (turn_candidates[starting_at].valid + turn_candidates[starting_at + 1].valid + turn_candidates[starting_at + 2].valid)) { // at least one invalid turn if (!turn_candidates[starting_at].valid) { handleDistinctConflict(via_edge, turn_candidates[starting_at + 2], turn_candidates[starting_at + 1]); } else if (!turn_candidates[starting_at + 1].valid) { handleDistinctConflict(via_edge, turn_candidates[starting_at + 2], turn_candidates[starting_at]); } else { handleDistinctConflict(via_edge, turn_candidates[starting_at + 1], turn_candidates[starting_at]); } } else if (turn_candidates[starting_at].valid && turn_candidates[starting_at + 1].valid && turn_candidates[starting_at + 2].valid && angularDeviation(turn_candidates[starting_at].angle, turn_candidates[starting_at + 1].angle) >= NARROW_TURN_ANGLE && angularDeviation(turn_candidates[starting_at + 1].angle, turn_candidates[starting_at + 2].angle) >= NARROW_TURN_ANGLE) { turn_candidates[starting_at].instruction = { findBasicTurnType(via_edge, turn_candidates[starting_at]), DirectionModifier::SlightLeft}; turn_candidates[starting_at + 1].instruction = { findBasicTurnType(via_edge, turn_candidates[starting_at + 1]), DirectionModifier::Left}; turn_candidates[starting_at + 2].instruction = { findBasicTurnType(via_edge, turn_candidates[starting_at + 2]), DirectionModifier::SharpLeft}; } else if (turn_candidates[starting_at].valid && turn_candidates[starting_at + 1].valid && turn_candidates[starting_at + 2].valid && ((first_direction == second_direction && second_direction == third_direction) || (third_direction == second_direction && angularDeviation(turn_candidates[starting_at].angle, turn_candidates[starting_at + 1].angle) < GROUP_ANGLE) || (second_direction == first_direction && angularDeviation(turn_candidates[starting_at + 1].angle, turn_candidates[starting_at + 2].angle) < GROUP_ANGLE))) { turn_candidates[starting_at].instruction = { detail::isRampClass(turn_candidates[starting_at].eid, node_based_graph) ? FirstRamp : FirstTurn, second_direction}; turn_candidates[starting_at + 1].instruction = { detail::isRampClass(turn_candidates[starting_at + 1].eid, node_based_graph) ? SecondRamp : SecondTurn, second_direction}; turn_candidates[starting_at + 2].instruction = { detail::isRampClass(turn_candidates[starting_at + 2].eid, node_based_graph) ? ThirdRamp : ThirdTurn, second_direction}; } else if (turn_candidates[starting_at].valid && turn_candidates[starting_at + 1].valid && turn_candidates[starting_at + 2].valid && ((third_direction == second_direction && angularDeviation(turn_candidates[starting_at].angle, turn_candidates[starting_at + 1].angle) >= GROUP_ANGLE) || (second_direction == first_direction && angularDeviation(turn_candidates[starting_at + 1].angle, turn_candidates[starting_at + 2].angle) >= GROUP_ANGLE))) { // conflict one side with an additional very sharp turn if (angularDeviation(turn_candidates[starting_at + 1].angle, turn_candidates[starting_at + 2].angle) >= GROUP_ANGLE) { handleDistinctConflict(via_edge, turn_candidates[starting_at + 1], turn_candidates[starting_at]); turn_candidates[starting_at + 2].instruction = { findBasicTurnType(via_edge, turn_candidates[starting_at + 2]), third_direction}; } else { turn_candidates[starting_at].instruction = { findBasicTurnType(via_edge, turn_candidates[starting_at]), first_direction}; handleDistinctConflict(via_edge, turn_candidates[starting_at + 2], turn_candidates[starting_at + 1]); } } else if ((first_direction == second_direction && turn_candidates[starting_at].valid != turn_candidates[starting_at + 1].valid) || (second_direction == third_direction && turn_candidates[starting_at + 1].valid != turn_candidates[starting_at + 2].valid)) { // no conflict, due to conflict being restricted to valid/invalid if (turn_candidates[starting_at].valid) turn_candidates[starting_at].instruction = { findBasicTurnType(via_edge, turn_candidates[starting_at]), first_direction}; if (turn_candidates[starting_at + 1].valid) turn_candidates[starting_at + 1].instruction = { findBasicTurnType(via_edge, turn_candidates[starting_at + 1]), second_direction}; if (turn_candidates[starting_at + 2].valid) turn_candidates[starting_at + 2].instruction = { findBasicTurnType(via_edge, turn_candidates[starting_at + 2]), third_direction}; } else { auto coord = localizer(node_based_graph.GetTarget(via_edge)); util::SimpleLogger().Write(logWARNING) << "Reached fallback for left turns, size 3: " << std::setprecision(12) << toFloating(coord.lat) << " " << toFloating(coord.lon); for (const auto candidate : turn_candidates) { const auto &out_data = node_based_graph.GetEdgeData(candidate.eid); util::SimpleLogger().Write(logWARNING) << "\tCandidate: " << candidate.toString() << " Name: " << out_data.name_id << " Road Class: " << (int)out_data.road_classification.road_class << " At: " << localizer(node_based_graph.GetTarget(candidate.eid)); } for (std::size_t i = starting_at; i < turn_candidates.size(); ++i) if (turn_candidates[i].valid) turn_candidates[i].instruction = { findBasicTurnType(via_edge, turn_candidates[i]), getTurnDirection(turn_candidates[i].angle)}; } } else if (turn_candidates.size() - starting_at == 4) { if (turn_candidates[starting_at].valid) turn_candidates[starting_at].instruction = { detail::isRampClass(turn_candidates[starting_at].eid, node_based_graph) ? FirstRamp : FirstTurn, DirectionModifier::Left}; if (turn_candidates[starting_at + 1].valid) turn_candidates[starting_at + 1].instruction = { detail::isRampClass(turn_candidates[starting_at + 1].eid, node_based_graph) ? SecondRamp : SecondTurn, DirectionModifier::Left}; if (turn_candidates[starting_at + 2].valid) turn_candidates[starting_at + 2].instruction = { detail::isRampClass(turn_candidates[starting_at + 2].eid, node_based_graph) ? ThirdRamp : ThirdTurn, DirectionModifier::Left}; if (turn_candidates[starting_at + 3].valid) turn_candidates[starting_at + 3].instruction = { detail::isRampClass(turn_candidates[starting_at + 3].eid, node_based_graph) ? FourthRamp : FourthTurn, DirectionModifier::Left}; } else { for (auto &candidate : turn_candidates) { if (!candidate.valid) continue; candidate.instruction = {detail::isRampClass(candidate.eid, node_based_graph) ? Ramp : Turn, getTurnDirection(candidate.angle)}; } /* auto coord = localizer(node_based_graph.GetTarget(via_edge)); util::SimpleLogger().Write(logWARNING) << "Reached fallback for left turns (" << starting_at << ") " << std::setprecision(12) << toFloating(coord.lat) << " " << toFloating(coord.lon); for (const auto candidate : turn_candidates) { const auto &out_data = node_based_graph.GetEdgeData(candidate.eid); util::SimpleLogger().Write(logWARNING) << "\tCandidate: " << candidate.toString() << " Name: " << out_data.name_id << " Road Class: " << (int)out_data.road_classification.road_class << " At: " << localizer(node_based_graph.GetTarget(candidate.eid)); } */ } return turn_candidates; } // can only assign three turns std::vector TurnAnalysis::assignRightTurns(const EdgeID via_edge, std::vector turn_candidates, const std::size_t up_to) const { BOOST_ASSERT(up_to <= turn_candidates.size()); const auto count_valid = [&turn_candidates, up_to]() { std::size_t count = 0; for (std::size_t i = 1; i < up_to; ++i) if (turn_candidates[i].valid) ++count; return count; }; if (up_to <= 1 || count_valid() == 0) return turn_candidates; // handle single turn if (up_to == 2) { if (angularDeviation(turn_candidates[1].angle, STRAIGHT_ANGLE) > NARROW_TURN_ANGLE && angularDeviation(turn_candidates[1].angle, 0) > NARROW_TURN_ANGLE) { // assign left turn turn_candidates[1].instruction = {findBasicTurnType(via_edge, turn_candidates[1]), DirectionModifier::Right}; } else if (angularDeviation(turn_candidates[1].angle, STRAIGHT_ANGLE) <= NARROW_TURN_ANGLE) { turn_candidates[1].instruction = {findBasicTurnType(via_edge, turn_candidates[1]), DirectionModifier::SlightRight}; } else { turn_candidates[1].instruction = {findBasicTurnType(via_edge, turn_candidates[1]), DirectionModifier::SharpRight}; } } else if (up_to == 3) { const auto first_direction = getTurnDirection(turn_candidates[1].angle); const auto second_direction = getTurnDirection(turn_candidates[2].angle); if (first_direction == second_direction) { // conflict handleDistinctConflict(via_edge, turn_candidates[2], turn_candidates[1]); } else { turn_candidates[1].instruction = {findBasicTurnType(via_edge, turn_candidates[1]), first_direction}; turn_candidates[2].instruction = {findBasicTurnType(via_edge, turn_candidates[2]), second_direction}; } } else if (up_to == 4) { const auto first_direction = getTurnDirection(turn_candidates[1].angle); const auto second_direction = getTurnDirection(turn_candidates[2].angle); const auto third_direction = getTurnDirection(turn_candidates[3].angle); if (first_direction != second_direction && second_direction != third_direction) { if (turn_candidates[1].valid) turn_candidates[1].instruction = {findBasicTurnType(via_edge, turn_candidates[1]), first_direction}; if (turn_candidates[2].valid) turn_candidates[2].instruction = {findBasicTurnType(via_edge, turn_candidates[2]), second_direction}; if (turn_candidates[3].valid) turn_candidates[3].instruction = {findBasicTurnType(via_edge, turn_candidates[3]), third_direction}; } else if (2 >= (turn_candidates[1].valid + turn_candidates[2].valid + turn_candidates[3].valid)) { // at least a single invalid if (!turn_candidates[3].valid) { handleDistinctConflict(via_edge, turn_candidates[2], turn_candidates[1]); } else if (!turn_candidates[1].valid) { handleDistinctConflict(via_edge, turn_candidates[3], turn_candidates[2]); } else // handles one-valid as well as two valid (1,3) { handleDistinctConflict(via_edge, turn_candidates[3], turn_candidates[1]); } } else if (turn_candidates[1].valid && turn_candidates[2].valid && turn_candidates[3].valid && angularDeviation(turn_candidates[1].angle, turn_candidates[2].angle) >= NARROW_TURN_ANGLE && angularDeviation(turn_candidates[2].angle, turn_candidates[3].angle) >= NARROW_TURN_ANGLE) { turn_candidates[1].instruction = {findBasicTurnType(via_edge, turn_candidates[1]), DirectionModifier::SharpRight}; turn_candidates[2].instruction = {findBasicTurnType(via_edge, turn_candidates[2]), DirectionModifier::Right}; turn_candidates[3].instruction = {findBasicTurnType(via_edge, turn_candidates[3]), DirectionModifier::SlightRight}; } else if (turn_candidates[1].valid && turn_candidates[2].valid && turn_candidates[3].valid && ((first_direction == second_direction && second_direction == third_direction) || (first_direction == second_direction && angularDeviation(turn_candidates[2].angle, turn_candidates[3].angle) < GROUP_ANGLE) || (second_direction == third_direction && angularDeviation(turn_candidates[1].angle, turn_candidates[2].angle) < GROUP_ANGLE))) { turn_candidates[1].instruction = { detail::isRampClass(turn_candidates[1].eid, node_based_graph) ? ThirdRamp : ThirdTurn, second_direction}; turn_candidates[2].instruction = { detail::isRampClass(turn_candidates[2].eid, node_based_graph) ? SecondRamp : SecondTurn, second_direction}; turn_candidates[3].instruction = { detail::isRampClass(turn_candidates[3].eid, node_based_graph) ? FirstRamp : FirstTurn, second_direction}; } else if (turn_candidates[1].valid && turn_candidates[2].valid && turn_candidates[3].valid && ((first_direction == second_direction && angularDeviation(turn_candidates[2].angle, turn_candidates[3].angle) >= GROUP_ANGLE) || (second_direction == third_direction && angularDeviation(turn_candidates[1].angle, turn_candidates[2].angle) >= GROUP_ANGLE))) { if (angularDeviation(turn_candidates[2].angle, turn_candidates[3].angle) >= GROUP_ANGLE) { handleDistinctConflict(via_edge, turn_candidates[2], turn_candidates[1]); turn_candidates[3].instruction = {findBasicTurnType(via_edge, turn_candidates[3]), third_direction}; } else { turn_candidates[1].instruction = {findBasicTurnType(via_edge, turn_candidates[1]), first_direction}; handleDistinctConflict(via_edge, turn_candidates[3], turn_candidates[2]); } } else if ((first_direction == second_direction && turn_candidates[1].valid != turn_candidates[2].valid) || (second_direction == third_direction && turn_candidates[2].valid != turn_candidates[3].valid)) { if (turn_candidates[1].valid) turn_candidates[1].instruction = {findBasicTurnType(via_edge, turn_candidates[1]), first_direction}; if (turn_candidates[2].valid) turn_candidates[2].instruction = {findBasicTurnType(via_edge, turn_candidates[2]), second_direction}; if (turn_candidates[3].valid) turn_candidates[3].instruction = {findBasicTurnType(via_edge, turn_candidates[3]), third_direction}; } else { auto coord = localizer(node_based_graph.GetTarget(via_edge)); util::SimpleLogger().Write(logWARNING) << "Reached fallback for right turns, size 3: " << std::setprecision(12) << toFloating(coord.lat) << " " << toFloating(coord.lon) << " Valids: " << (turn_candidates[1].valid + turn_candidates[2].valid + turn_candidates[3].valid); for (const auto candidate : turn_candidates) { const auto &out_data = node_based_graph.GetEdgeData(candidate.eid); util::SimpleLogger().Write(logWARNING) << "\tCandidate: " << candidate.toString() << " Name: " << out_data.name_id << " Road Class: " << (int)out_data.road_classification.road_class << " At: " << localizer(node_based_graph.GetTarget(candidate.eid)); } for (std::size_t i = 1; i < up_to; ++i) if (turn_candidates[i].valid) turn_candidates[i].instruction = { findBasicTurnType(via_edge, turn_candidates[i]), getTurnDirection(turn_candidates[i].angle)}; } } else if (up_to == 5) { if (turn_candidates[4].valid) turn_candidates[4].instruction = { detail::isRampClass(turn_candidates[4].eid, node_based_graph) ? FirstRamp : FirstTurn, DirectionModifier::Right}; if (turn_candidates[3].valid) turn_candidates[3].instruction = { detail::isRampClass(turn_candidates[3].eid, node_based_graph) ? SecondRamp : SecondTurn, DirectionModifier::Right}; if (turn_candidates[2].valid) turn_candidates[2].instruction = { detail::isRampClass(turn_candidates[2].eid, node_based_graph) ? ThirdRamp : ThirdTurn, DirectionModifier::Right}; if (turn_candidates[1].valid) turn_candidates[1].instruction = { detail::isRampClass(turn_candidates[1].eid, node_based_graph) ? FourthRamp : FourthTurn, DirectionModifier::Right}; } else { for (std::size_t i = 1; i < up_to; ++i) { auto &candidate = turn_candidates[i]; if (!candidate.valid) continue; candidate.instruction = {detail::isRampClass(candidate.eid, node_based_graph) ? Ramp : Turn, getTurnDirection(candidate.angle)}; } /* auto coord = localizer(node_based_graph.GetTarget(via_edge)); util::SimpleLogger().Write(logWARNING) << "Reached fallback for right turns (" << up_to << ") " << std::setprecision(12) << toFloating(coord.lat) << " " << toFloating(coord.lon); for (const auto candidate : turn_candidates) { const auto &out_data = node_based_graph.GetEdgeData(candidate.eid); util::SimpleLogger().Write(logWARNING) << "\tCandidate: " << candidate.toString() << " Name: " << out_data.name_id << " Road Class: " << (int)out_data.road_classification.road_class << " At: " << localizer(node_based_graph.GetTarget(candidate.eid)); } */ } return turn_candidates; } } // namespace guidance } // namespace extractor } // namespace osrm