/* open source routing machine Copyright (C) Dennis Luxen, others 2010 This program is free software; you can redistribute it and/or modify it under the terms of the GNU AFFERO General Public License as published by the Free Software Foundation; either version 3 of the License, or any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU Affero General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA or see http://www.gnu.org/licenses/agpl.txt. */ #include "PBFParser.h" PBFParser::PBFParser(const char * fileName, ExtractorCallbacks* ec, ScriptingEnvironment& se) : BaseParser( ec, se ) { GOOGLE_PROTOBUF_VERIFY_VERSION; //TODO: What is the bottleneck here? Filling the queue or reading the stuff from disk? //NOTE: With Lua scripting, it is parsing the stuff. I/O is virtually for free. threadDataQueue = boost::make_shared >( 2500 ); /* Max 2500 items in queue, hardcoded. */ input.open(fileName, std::ios::in | std::ios::binary); if (!input) { throw OSRMException("pbf file not found."); } #ifndef NDEBUG blockCount = 0; groupCount = 0; #endif } PBFParser::~PBFParser() { if(input.is_open()) { input.close(); } // Clean up any leftover ThreadData objects in the queue _ThreadData* td; while (threadDataQueue->try_pop(td)) { delete td; } google::protobuf::ShutdownProtobufLibrary(); #ifndef NDEBUG DEBUG("parsed " << blockCount << " blocks from pbf with " << groupCount << " groups"); #endif } inline bool PBFParser::ReadHeader() { _ThreadData initData; /** read Header */ if(!readPBFBlobHeader(input, &initData)) { return false; } if(readBlob(input, &initData)) { if(!initData.PBFHeaderBlock.ParseFromArray(&(initData.charBuffer[0]), initData.charBuffer.size() ) ) { std::cerr << "[error] Header not parseable!" << std::endl; return false; } for(int i = 0, featureSize = initData.PBFHeaderBlock.required_features_size(); i < featureSize; ++i) { const std::string& feature = initData.PBFHeaderBlock.required_features( i ); bool supported = false; if ( "OsmSchema-V0.6" == feature ) { supported = true; } else if ( "DenseNodes" == feature ) { supported = true; } if ( !supported ) { std::cerr << "[error] required feature not supported: " << feature.data() << std::endl; return false; } } } else { std::cerr << "[error] blob not loaded!" << std::endl; } return true; } inline void PBFParser::ReadData() { bool keepRunning = true; do { _ThreadData *threadData = new _ThreadData(); keepRunning = readNextBlock(input, threadData); if (keepRunning) { threadDataQueue->push(threadData); } else { threadDataQueue->push(NULL); // No more data to read, parse stops when NULL encountered delete threadData; } } while(keepRunning); } inline void PBFParser::ParseData() { while (true) { _ThreadData *threadData; threadDataQueue->wait_and_pop(threadData); if( NULL==threadData ) { INFO("Parse Data Thread Finished"); threadDataQueue->push(NULL); // Signal end of data for other threads break; } loadBlock(threadData); for(int i = 0, groupSize = threadData->PBFprimitiveBlock.primitivegroup_size(); i < groupSize; ++i) { threadData->currentGroupID = i; loadGroup(threadData); if(threadData->entityTypeIndicator == TypeNode) { parseNode(threadData); } if(threadData->entityTypeIndicator == TypeWay) { parseWay(threadData); } if(threadData->entityTypeIndicator == TypeRelation) { parseRelation(threadData); } if(threadData->entityTypeIndicator == TypeDenseNode) { parseDenseNode(threadData); } } delete threadData; threadData = NULL; } } inline bool PBFParser::Parse() { // Start the read and parse threads boost::thread readThread(boost::bind(&PBFParser::ReadData, this)); //Open several parse threads that are synchronized before call to boost::thread parseThread(boost::bind(&PBFParser::ParseData, this)); // Wait for the threads to finish readThread.join(); parseThread.join(); return true; } inline void PBFParser::parseDenseNode(_ThreadData * threadData) { const OSMPBF::DenseNodes& dense = threadData->PBFprimitiveBlock.primitivegroup( threadData->currentGroupID ).dense(); int denseTagIndex = 0; int64_t m_lastDenseID = 0; int64_t m_lastDenseLatitude = 0; int64_t m_lastDenseLongitude = 0; const int number_of_nodes = dense.id_size(); std::vector extracted_nodes_vector(number_of_nodes); for(int i = 0; i < number_of_nodes; ++i) { m_lastDenseID += dense.id( i ); m_lastDenseLatitude += dense.lat( i ); m_lastDenseLongitude += dense.lon( i ); extracted_nodes_vector[i].id = m_lastDenseID; extracted_nodes_vector[i].lat = COORDINATE_PRECISION*( ( double ) m_lastDenseLatitude * threadData->PBFprimitiveBlock.granularity() + threadData->PBFprimitiveBlock.lat_offset() ) / NANO; extracted_nodes_vector[i].lon = COORDINATE_PRECISION*( ( double ) m_lastDenseLongitude * threadData->PBFprimitiveBlock.granularity() + threadData->PBFprimitiveBlock.lon_offset() ) / NANO; while (denseTagIndex < dense.keys_vals_size()) { const int tagValue = dense.keys_vals( denseTagIndex ); if( 0==tagValue ) { ++denseTagIndex; break; } const int keyValue = dense.keys_vals ( denseTagIndex+1 ); const std::string & key = threadData->PBFprimitiveBlock.stringtable().s(tagValue).data(); const std::string & value = threadData->PBFprimitiveBlock.stringtable().s(keyValue).data(); extracted_nodes_vector[i].keyVals.insert(std::make_pair(key, value)); denseTagIndex += 2; } } #pragma omp parallel for schedule ( guided ) for(int i = 0; i < number_of_nodes; ++i) { ImportNode &n = extracted_nodes_vector[i]; ParseNodeInLua( n, scriptingEnvironment.getLuaStateForThreadID(omp_get_thread_num()) ); } BOOST_FOREACH(ImportNode &n, extracted_nodes_vector) { extractor_callbacks->nodeFunction(n); } } inline void PBFParser::parseNode(_ThreadData * ) { throw OSRMException( "Parsing of simple nodes not supported. PBF should use dense nodes" ); } inline void PBFParser::parseRelation(_ThreadData * threadData) { //TODO: leave early, if relation is not a restriction //TODO: reuse rawRestriction container if( !use_turn_restrictions ) { return; } const OSMPBF::PrimitiveGroup& group = threadData->PBFprimitiveBlock.primitivegroup( threadData->currentGroupID ); for(int i = 0; i < group.relations_size(); ++i ) { std::string except_tag_string; const OSMPBF::Relation& inputRelation = threadData->PBFprimitiveBlock.primitivegroup( threadData->currentGroupID ).relations(i); bool isRestriction = false; bool isOnlyRestriction = false; for(int k = 0, endOfKeys = inputRelation.keys_size(); k < endOfKeys; ++k) { const std::string & key = threadData->PBFprimitiveBlock.stringtable().s(inputRelation.keys(k)); const std::string & val = threadData->PBFprimitiveBlock.stringtable().s(inputRelation.vals(k)); if ("type" == key) { if( "restriction" == val) { isRestriction = true; } else { break; } } if ("restriction" == key) { if(val.find("only_") == 0) { isOnlyRestriction = true; } } if ("except" == key) { except_tag_string = val; } } if( isRestriction && ShouldIgnoreRestriction(except_tag_string) ) { continue; } if(isRestriction) { int64_t lastRef = 0; _RawRestrictionContainer currentRestrictionContainer(isOnlyRestriction); for(int rolesIndex = 0; rolesIndex < inputRelation.roles_sid_size(); ++rolesIndex) { std::string role(threadData->PBFprimitiveBlock.stringtable().s( inputRelation.roles_sid( rolesIndex ) ).data()); lastRef += inputRelation.memids(rolesIndex); if(!("from" == role || "to" == role || "via" == role)) { continue; } switch(inputRelation.types(rolesIndex)) { case 0: //node if("from" == role || "to" == role) { //Only via should be a node continue; } assert("via" == role); if(UINT_MAX != currentRestrictionContainer.viaNode) { currentRestrictionContainer.viaNode = UINT_MAX; } assert(UINT_MAX == currentRestrictionContainer.viaNode); currentRestrictionContainer.restriction.viaNode = lastRef; break; case 1: //way assert("from" == role || "to" == role || "via" == role); if("from" == role) { currentRestrictionContainer.fromWay = lastRef; } if ("to" == role) { currentRestrictionContainer.toWay = lastRef; } if ("via" == role) { assert(currentRestrictionContainer.restriction.toNode == UINT_MAX); currentRestrictionContainer.viaNode = lastRef; } break; case 2: //relation, not used. relations relating to relations are evil. continue; assert(false); break; default: //should not happen //cout << "unknown"; assert(false); break; } } if(!extractor_callbacks->restrictionFunction(currentRestrictionContainer)) { std::cerr << "[PBFParser] relation not parsed" << std::endl; } } } } inline void PBFParser::parseWay(_ThreadData * threadData) { const int number_of_ways = threadData->PBFprimitiveBlock.primitivegroup( threadData->currentGroupID ).ways_size(); std::vector parsed_way_vector(number_of_ways); for(int i = 0; i < number_of_ways; ++i) { const OSMPBF::Way& inputWay = threadData->PBFprimitiveBlock.primitivegroup( threadData->currentGroupID ).ways( i ); parsed_way_vector[i].id = inputWay.id(); unsigned pathNode(0); const int number_of_referenced_nodes = inputWay.refs_size(); for(int j = 0; j < number_of_referenced_nodes; ++j) { pathNode += inputWay.refs(j); parsed_way_vector[i].path.push_back(pathNode); } assert(inputWay.keys_size() == inputWay.vals_size()); const int number_of_keys = inputWay.keys_size(); for(int j = 0; j < number_of_keys; ++j) { const std::string & key = threadData->PBFprimitiveBlock.stringtable().s(inputWay.keys(j)); const std::string & val = threadData->PBFprimitiveBlock.stringtable().s(inputWay.vals(j)); parsed_way_vector[i].keyVals.insert(std::make_pair(key, val)); } } #pragma omp parallel for schedule ( guided ) for(int i = 0; i < number_of_ways; ++i) { ExtractionWay & w = parsed_way_vector[i]; ParseWayInLua( w, scriptingEnvironment.getLuaStateForThreadID(omp_get_thread_num()) ); } BOOST_FOREACH(ExtractionWay & w, parsed_way_vector) { extractor_callbacks->wayFunction(w); } } inline void PBFParser::loadGroup(_ThreadData * threadData) { #ifndef NDEBUG ++groupCount; #endif const OSMPBF::PrimitiveGroup& group = threadData->PBFprimitiveBlock.primitivegroup( threadData->currentGroupID ); threadData->entityTypeIndicator = 0; if ( group.nodes_size() != 0 ) { threadData->entityTypeIndicator = TypeNode; } if ( group.ways_size() != 0 ) { threadData->entityTypeIndicator = TypeWay; } if ( group.relations_size() != 0 ) { threadData->entityTypeIndicator = TypeRelation; } if ( group.has_dense() ) { threadData->entityTypeIndicator = TypeDenseNode; assert( group.dense().id_size() != 0 ); } assert( threadData->entityTypeIndicator != 0 ); } inline void PBFParser::loadBlock(_ThreadData * threadData) { #ifndef NDEBUG ++blockCount; #endif threadData->currentGroupID = 0; threadData->currentEntityID = 0; } inline bool PBFParser::readPBFBlobHeader(std::fstream& stream, _ThreadData * threadData) { int size(0); stream.read((char *)&size, sizeof(int)); size = swapEndian(size); if(stream.eof()) { return false; } if ( size > MAX_BLOB_HEADER_SIZE || size < 0 ) { return false; } char *data = new char[size]; stream.read(data, size*sizeof(data[0])); bool dataSuccessfullyParsed = (threadData->PBFBlobHeader).ParseFromArray( data, size); delete[] data; return dataSuccessfullyParsed; } inline bool PBFParser::unpackZLIB(std::fstream &, _ThreadData * threadData) { unsigned rawSize = threadData->PBFBlob.raw_size(); char* unpackedDataArray = new char[rawSize]; z_stream compressedDataStream; compressedDataStream.next_in = ( unsigned char* ) threadData->PBFBlob.zlib_data().data(); compressedDataStream.avail_in = threadData->PBFBlob.zlib_data().size(); compressedDataStream.next_out = ( unsigned char* ) unpackedDataArray; compressedDataStream.avail_out = rawSize; compressedDataStream.zalloc = Z_NULL; compressedDataStream.zfree = Z_NULL; compressedDataStream.opaque = Z_NULL; int ret = inflateInit( &compressedDataStream ); if ( ret != Z_OK ) { std::cerr << "[error] failed to init zlib stream" << std::endl; delete[] unpackedDataArray; return false; } ret = inflate( &compressedDataStream, Z_FINISH ); if ( ret != Z_STREAM_END ) { std::cerr << "[error] failed to inflate zlib stream" << std::endl; std::cerr << "[error] Error type: " << ret << std::endl; delete[] unpackedDataArray; return false; } ret = inflateEnd( &compressedDataStream ); if ( ret != Z_OK ) { std::cerr << "[error] failed to deinit zlib stream" << std::endl; delete[] unpackedDataArray; return false; } threadData->charBuffer.clear(); threadData->charBuffer.resize(rawSize); std::copy(unpackedDataArray, unpackedDataArray + rawSize, threadData->charBuffer.begin()); delete[] unpackedDataArray; return true; } inline bool PBFParser::unpackLZMA(std::fstream &, _ThreadData * ) { return false; } inline bool PBFParser::readBlob(std::fstream& stream, _ThreadData * threadData) { if(stream.eof()) { return false; } const int size = threadData->PBFBlobHeader.datasize(); if ( size < 0 || size > MAX_BLOB_SIZE ) { std::cerr << "[error] invalid Blob size:" << size << std::endl; return false; } char* data = new char[size]; stream.read(data, sizeof(data[0])*size); if ( !threadData->PBFBlob.ParseFromArray( data, size ) ) { std::cerr << "[error] failed to parse blob" << std::endl; delete[] data; return false; } if ( threadData->PBFBlob.has_raw() ) { const std::string& data = threadData->PBFBlob.raw(); threadData->charBuffer.clear(); threadData->charBuffer.resize( data.size() ); std::copy(data.begin(), data.end(), threadData->charBuffer.begin()); } else if ( threadData->PBFBlob.has_zlib_data() ) { if ( !unpackZLIB(stream, threadData) ) { std::cerr << "[error] zlib data encountered that could not be unpacked" << std::endl; delete[] data; return false; } } else if ( threadData->PBFBlob.has_lzma_data() ) { if ( !unpackLZMA(stream, threadData) ) { std::cerr << "[error] lzma data encountered that could not be unpacked" << std::endl; } delete[] data; return false; } else { std::cerr << "[error] Blob contains no data" << std::endl; delete[] data; return false; } delete[] data; return true; } bool PBFParser::readNextBlock(std::fstream& stream, _ThreadData * threadData) { if(stream.eof()) { return false; } if ( !readPBFBlobHeader(stream, threadData) ){ return false; } if ( threadData->PBFBlobHeader.type() != "OSMData" ) { return false; } if ( !readBlob(stream, threadData) ) { return false; } if ( !threadData->PBFprimitiveBlock.ParseFromArray( &(threadData->charBuffer[0]), threadData-> charBuffer.size() ) ) { std::cerr << "failed to parse PrimitiveBlock" << std::endl; return false; } return true; }