/* Copyright (c) 2013, Project OSRM, Dennis Luxen, others All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef BASICROUTINGINTERFACE_H_ #define BASICROUTINGINTERFACE_H_ #include "../DataStructures/RawRouteData.h" #include "../DataStructures/SearchEngineData.h" #include "../DataStructures/TurnInstructions.h" #include "../Util/ContainerUtils.h" #include "../Util/SimpleLogger.h" #include #include #include #include #include SearchEngineData::SearchEngineHeapPtr SearchEngineData::forwardHeap; SearchEngineData::SearchEngineHeapPtr SearchEngineData::backwardHeap; SearchEngineData::SearchEngineHeapPtr SearchEngineData::forwardHeap2; SearchEngineData::SearchEngineHeapPtr SearchEngineData::backwardHeap2; SearchEngineData::SearchEngineHeapPtr SearchEngineData::forwardHeap3; SearchEngineData::SearchEngineHeapPtr SearchEngineData::backwardHeap3; template class BasicRoutingInterface : boost::noncopyable { private: typedef typename DataFacadeT::EdgeData EdgeData; protected: DataFacadeT * facade; public: explicit BasicRoutingInterface( DataFacadeT * facade ) : facade(facade) { } virtual ~BasicRoutingInterface(){ }; inline void RoutingStep( SearchEngineData::QueryHeap & forward_heap, SearchEngineData::QueryHeap & reverse_heap, NodeID * middle_node_id, int * upper_bound, const int edge_expansion_offset, const bool forward_direction ) const { const NodeID node = forward_heap.DeleteMin(); const int distance = forward_heap.GetKey(node); // SimpleLogger().Write() << (forward_direction ? "fwd" : "rev") << " settled (" << forward_heap.GetData( node ).parent << "," << node << ")=" << distance; if(reverse_heap.WasInserted(node) ){ const int new_distance = reverse_heap.GetKey(node) + distance; if(new_distance < *upper_bound ){ if( new_distance >= 0 ) { *middle_node_id = node; *upper_bound = new_distance; } } } if( (distance-edge_expansion_offset) > *upper_bound ){ forward_heap.DeleteAll(); return; } //Stalling for( EdgeID edge = facade->BeginEdges( node ); edge < facade->EndEdges(node); ++edge ) { const EdgeData & data = facade->GetEdgeData(edge); const bool reverse_flag = (!forward_direction) ? data.forward : data.backward; if( reverse_flag ) { const NodeID to = facade->GetTarget(edge); const int edge_weight = data.distance; BOOST_ASSERT_MSG( edge_weight > 0, "edge_weight invalid" ); if(forward_heap.WasInserted( to )) { if(forward_heap.GetKey( to ) + edge_weight < distance) { return; } } } } for( EdgeID edge = facade->BeginEdges(node), end_edge = facade->EndEdges(node); edge < end_edge; ++edge ) { const EdgeData & data = facade->GetEdgeData(edge); bool forward_directionFlag = (forward_direction ? data.forward : data.backward ); if( forward_directionFlag ) { const NodeID to = facade->GetTarget(edge); const int edge_weight = data.distance; BOOST_ASSERT_MSG( edge_weight > 0, "edge_weight invalid" ); const int to_distance = distance + edge_weight; //New Node discovered -> Add to Heap + Node Info Storage if ( !forward_heap.WasInserted( to ) ) { forward_heap.Insert( to, to_distance, node ); } //Found a shorter Path -> Update distance else if ( to_distance < forward_heap.GetKey( to ) ) { forward_heap.GetData( to ).parent = node; forward_heap.DecreaseKey( to, to_distance ); //new parent } } } } //TODO: refactor parameters to only edge ids for start and end inline void UnpackPath( const std::vector & packed_path, const unsigned packed_geometry_id_of_first_edge, const int fwd_index_offset, const bool start_traversed_in_reverse, const unsigned packed_geometry_id_of_last_edge, const int rev_index_offset, const bool target_traversed_in_reverse, std::vector & unpacked_path ) const { const unsigned packed_path_size = packed_path.size(); std::stack > recursion_stack; //We have to push the path in reverse order onto the stack because it's LIFO. for(unsigned i = packed_path_size-1; i > 0; --i){ recursion_stack.push( std::make_pair(packed_path[i-1], packed_path[i]) ); } std::pair edge; while(!recursion_stack.empty()) { // bool segment_reversed = false; edge = recursion_stack.top(); recursion_stack.pop(); // facade->FindEdge does not suffice here in case of shortcuts. // The above explanation unclear? Think! EdgeID smaller_edge_id = SPECIAL_EDGEID; int edge_weight = INT_MAX; for( EdgeID edge_id = facade->BeginEdges(edge.first); edge_id < facade->EndEdges(edge.first); ++edge_id ){ const int weight = facade->GetEdgeData(edge_id).distance; if( (facade->GetTarget(edge_id) == edge.second) && (weight < edge_weight) && facade->GetEdgeData(edge_id).forward ){ smaller_edge_id = edge_id; edge_weight = weight; } } if( SPECIAL_EDGEID == smaller_edge_id ){ for( EdgeID edge_id = facade->BeginEdges(edge.second); edge_id < facade->EndEdges(edge.second); ++edge_id ){ const int weight = facade->GetEdgeData(edge_id).distance; if( (facade->GetTarget(edge_id) == edge.first) && (weight < edge_weight) && facade->GetEdgeData(edge_id).backward ){ smaller_edge_id = edge_id; edge_weight = weight; } } } BOOST_ASSERT_MSG(edge_weight != INT_MAX, "edge id invalid"); BOOST_ASSERT( facade->EndEdges(edge.first) != smaller_edge_id ); const EdgeData& ed = facade->GetEdgeData(smaller_edge_id); if( ed.shortcut ) {//unpack const NodeID middle_node_id = ed.id; //again, we need to this in reversed order recursion_stack.push(std::make_pair(middle_node_id, edge.second)); recursion_stack.push(std::make_pair(edge.first, middle_node_id)); } else { BOOST_ASSERT_MSG(!ed.shortcut, "original edge flagged as shortcut"); unsigned name_index = facade->GetNameIndexFromEdgeID(ed.id); const TurnInstruction turn_instruction = facade->GetTurnInstructionForEdgeID(ed.id); if ( !facade->EdgeIsCompressed(ed.id) ){ BOOST_ASSERT( !facade->EdgeIsCompressed(ed.id) ); unpacked_path.push_back( PathData( facade->GetGeometryIndexForEdgeID(ed.id), name_index, turn_instruction, ed.distance ) ); } else { std::vector id_vector; facade->GetUncompressedGeometry(facade->GetGeometryIndexForEdgeID(ed.id), id_vector); const int start_index = ( unpacked_path.empty() ? ( ( start_traversed_in_reverse ) ? id_vector.size() - fwd_index_offset - 1 : fwd_index_offset ) : 0 ); const int end_index = id_vector.size(); BOOST_ASSERT( start_index >= 0 ); BOOST_ASSERT( start_index <= end_index ); for( unsigned i = start_index; i < end_index; ++i ) { unpacked_path.push_back( PathData( id_vector[i], name_index, TurnInstructionsClass::NoTurn, 0 ) ); } unpacked_path.back().turnInstruction = turn_instruction; unpacked_path.back().durationOfSegment = ed.distance; } } } if(SPECIAL_EDGEID != packed_geometry_id_of_last_edge) { SimpleLogger().Write(logDEBUG) << "unpacking last segment " << packed_geometry_id_of_last_edge; SimpleLogger().Write(logDEBUG) << "target_traversed_in_reverse: " << (target_traversed_in_reverse ? "y" : "n"); std::vector id_vector; facade->GetUncompressedGeometry(packed_geometry_id_of_last_edge, id_vector); if( target_traversed_in_reverse ) { std::reverse(id_vector.begin(), id_vector.end() ); } SimpleLogger().Write(logDEBUG) << "id_vector.size() " << id_vector.size(); const bool start_and_end_on_same_edge = (packed_geometry_id_of_first_edge == packed_geometry_id_of_last_edge) && unpacked_path.empty(); const int start_index = ( start_and_end_on_same_edge ? id_vector.size() - fwd_index_offset : 0 ); const int end_index = (target_traversed_in_reverse ? id_vector.size() - rev_index_offset : rev_index_offset); SimpleLogger().Write(logDEBUG) << "fetching from [" << start_index << "," << end_index << "]"; BOOST_ASSERT( start_index >= 0 ); BOOST_ASSERT( start_index <= end_index ); for( unsigned i = start_index; i < end_index; ++i ) { SimpleLogger().Write(logDEBUG) << facade->GetCoordinateOfNode(id_vector[i]); unpacked_path.push_back( PathData( id_vector[i], 0, TurnInstructionsClass::NoTurn, 0 ) ); } } } inline void UnpackEdge( const NodeID s, const NodeID t, std::vector & unpacked_path ) const { std::stack > recursion_stack; recursion_stack.push(std::make_pair(s,t)); std::pair edge; while(!recursion_stack.empty()) { edge = recursion_stack.top(); recursion_stack.pop(); EdgeID smaller_edge_id = SPECIAL_EDGEID; int edge_weight = INT_MAX; for( EdgeID edge_id = facade->BeginEdges(edge.first); edge_id < facade->EndEdges(edge.first); ++edge_id ){ const int weight = facade->GetEdgeData(edge_id).distance; if( (facade->GetTarget(edge_id) == edge.second) && (weight < edge_weight) && facade->GetEdgeData(edge_id).forward ){ smaller_edge_id = edge_id; edge_weight = weight; } } if( SPECIAL_EDGEID == smaller_edge_id ){ for( EdgeID edge_id = facade->BeginEdges(edge.second); edge_id < facade->EndEdges(edge.second); ++edge_id ){ const int weight = facade->GetEdgeData(edge_id).distance; if( (facade->GetTarget(edge_id) == edge.first) && (weight < edge_weight) && facade->GetEdgeData(edge_id).backward ){ smaller_edge_id = edge_id; edge_weight = weight; } } } BOOST_ASSERT_MSG(edge_weight != INT_MAX, "edge weight invalid"); const EdgeData& ed = facade->GetEdgeData(smaller_edge_id); if(ed.shortcut) {//unpack const NodeID middle_node_id = ed.id; //again, we need to this in reversed order recursion_stack.push( std::make_pair(middle_node_id, edge.second) ); recursion_stack.push( std::make_pair(edge.first, middle_node_id) ); } else { BOOST_ASSERT_MSG(!ed.shortcut, "edge must be shortcut"); unpacked_path.push_back(edge.first ); } } unpacked_path.push_back(t); } inline void RetrievePackedPathFromHeap( const SearchEngineData::QueryHeap & forward_heap, const SearchEngineData::QueryHeap & reverse_heap, const NodeID middle_node_id, std::vector & packed_path ) const { NodeID current_node_id = middle_node_id; while(current_node_id != forward_heap.GetData(current_node_id).parent) { current_node_id = forward_heap.GetData(current_node_id).parent; packed_path.push_back(current_node_id); } SimpleLogger().Write() << "parent of last node. " << forward_heap.GetData(current_node_id).parent; std::reverse(packed_path.begin(), packed_path.end()); packed_path.push_back(middle_node_id); current_node_id = middle_node_id; while (current_node_id != reverse_heap.GetData(current_node_id).parent){ current_node_id = reverse_heap.GetData(current_node_id).parent; packed_path.push_back(current_node_id); } SimpleLogger().Write(logDEBUG) << "packed path"; BOOST_FOREACH(NodeID node, packed_path) { SimpleLogger().Write(logDEBUG) << "node: " << node; } } //TODO: reorder parameters inline void RetrievePackedPathFromSingleHeap( SearchEngineData::QueryHeap & search_heap, const NodeID middle_node_id, std::vector& packed_path ) const { NodeID current_node_id = middle_node_id; while(current_node_id != search_heap.GetData(current_node_id).parent) { current_node_id = search_heap.GetData(current_node_id).parent; packed_path.push_back(current_node_id); } } int ComputeEdgeOffset(const PhantomNode & phantom) const { return phantom.forward_weight + (phantom.isBidirected() ? phantom.reverse_weight : 0); } }; #endif /* BASICROUTINGINTERFACE_H_ */