/* Copyright (c) 2015, Project OSRM contributors All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef ROUND_TRIP_HPP #define ROUND_TRIP_HPP #include "plugin_base.hpp" #include "../algorithms/object_encoder.hpp" #include "../algorithms/tarjan_scc.hpp" #include "../routing_algorithms/tsp_nearest_neighbour.hpp" #include "../routing_algorithms/tsp_farthest_insertion.hpp" #include "../routing_algorithms/tsp_brute_force.hpp" #include "../data_structures/query_edge.hpp" #include "../data_structures/search_engine.hpp" #include "../data_structures/matrix_graph_wrapper.hpp" #include "../data_structures/restriction.hpp" #include "../data_structures/restriction_map.hpp" #include "../descriptors/descriptor_base.hpp" #include "../descriptors/json_descriptor.hpp" #include "../util/json_renderer.hpp" #include "../util/make_unique.hpp" #include "../util/string_util.hpp" #include "../util/timing_util.hpp" #include "../util/simple_logger.hpp" #include "../util/dist_table_wrapper.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include template class RoundTripPlugin final : public BasePlugin { private: std::string descriptor_string; DataFacadeT *facade; std::unique_ptr> search_engine_ptr; public: explicit RoundTripPlugin(DataFacadeT *facade) : descriptor_string("trip"), facade(facade) { search_engine_ptr = osrm::make_unique>(facade); } const std::string GetDescriptor() const override final { return descriptor_string; } void GetPhantomNodes(const RouteParameters &route_parameters, PhantomNodeArray & phantom_node_vector) { const bool checksum_OK = (route_parameters.check_sum == facade->GetCheckSum()); // find phantom nodes for all input coords for (const auto i : osrm::irange(0, route_parameters.coordinates.size())) { // if client hints are helpful, encode hints if (checksum_OK && i < route_parameters.hints.size() && !route_parameters.hints[i].empty()) { PhantomNode current_phantom_node; ObjectEncoder::DecodeFromBase64(route_parameters.hints[i], current_phantom_node); if (current_phantom_node.is_valid(facade->GetNumberOfNodes())) { phantom_node_vector[i].emplace_back(std::move(current_phantom_node)); continue; } } facade->IncrementalFindPhantomNodeForCoordinate(route_parameters.coordinates[i], phantom_node_vector[i], 1); if (phantom_node_vector[i].size() > 1) { phantom_node_vector[i].erase(std::begin(phantom_node_vector[i])); } BOOST_ASSERT(phantom_node_vector[i].front().is_valid(facade->GetNumberOfNodes())); } } struct SCC_Component{ SCC_Component(std::vector in_component, std::vector in_component_range) : component(in_component), component_range(in_component_range) { component_range.push_back(in_component.size()); }; SCC_Component(std::vector in_component) : component(in_component), component_range({0, in_component.size()}) { }; std::size_t GetNumberOfComponents() const{ return component_range.size() - 1; } const std::vector component; std::vector component_range; }; SCC_Component SplitUnaccessibleLocations(const std::size_t number_of_locations, const DistTableWrapper & result_table) { // Run TarjanSCC auto wrapper = std::make_shared>(result_table.GetTable(), number_of_locations); auto scc = TarjanSCC>(wrapper); scc.run(); std::vector range_insertion; std::vector component_range; range_insertion.reserve(scc.get_number_of_components()); component_range.reserve(scc.get_number_of_components()); std::vector components(number_of_locations, 0); auto prefix = 0; for (size_t j = 0; j < scc.get_number_of_components(); ++j){ range_insertion.push_back(prefix); component_range.push_back(prefix); prefix += scc.get_component_size(j); } for (size_t i = 0; i < number_of_locations; ++i) { components[range_insertion[scc.get_component_id(i)]] = i; ++range_insertion[scc.get_component_id(i)]; } return SCC_Component(components, component_range); } void SetLocPermutationOutput(const std::vector & loc_permutation, osrm::json::Object & json_result){ osrm::json::Array json_loc_permutation; json_loc_permutation.values.insert(std::end(json_loc_permutation.values), std::begin(loc_permutation), std::end(loc_permutation)); json_result.values["loc_permutation"] = json_loc_permutation; } void SetDistanceOutput(const int distance, osrm::json::Object & json_result) { json_result.values["distance"] = distance; } void SetRuntimeOutput(const float runtime, osrm::json::Object & json_result) { json_result.values["runtime"] = runtime; } void SetGeometry(const RouteParameters &route_parameters, const InternalRouteResult & min_route, osrm::json::Object & json_result) { // return geometry result to json std::unique_ptr> descriptor; descriptor = osrm::make_unique>(facade); descriptor->SetConfig(route_parameters); descriptor->Run(min_route, json_result); } void ComputeRoute(const PhantomNodeArray & phantom_node_vector, const RouteParameters & route_parameters, const std::vector & trip, InternalRouteResult & min_route) { // given he final trip, compute total distance and return the route and location permutation PhantomNodes viapoint; for (auto it = std::begin(trip); it != std::end(trip); ++it) { const auto from_node = *it; const auto to_node = std::next(it) != std::end(trip) ? *std::next(it) : *std::begin(trip); viapoint = PhantomNodes{phantom_node_vector[from_node][0], phantom_node_vector[to_node][0]}; min_route.segment_end_coordinates.emplace_back(viapoint); } search_engine_ptr->shortest_path(min_route.segment_end_coordinates, route_parameters.uturns, min_route); } int HandleRequest(const RouteParameters &route_parameters, osrm::json::Object &json_result) override final { // check if all inputs are coordinates if (!check_all_coordinates(route_parameters.coordinates)) { return 400; } // get phantom nodes PhantomNodeArray phantom_node_vector(route_parameters.coordinates.size()); GetPhantomNodes(route_parameters, phantom_node_vector); auto number_of_locations = phantom_node_vector.size(); // compute the distance table of all phantom nodes const auto result_table = DistTableWrapper(*search_engine_ptr->distance_table(phantom_node_vector), number_of_locations); if (result_table.size() == 0){ return 400; } const constexpr std::size_t BF_MAX_FEASABLE = 10; BOOST_ASSERT_MSG(result_table.size() > 0, "Distance Table is empty."); // get scc components SCC_Component scc = [&](){ if (*std::max_element(result_table.begin(), result_table.end()) == INVALID_EDGE_WEIGHT) { // compute all scc with tarjan return SplitUnaccessibleLocations(number_of_locations, result_table); } else { // whole graph is one scc std::vector location_ids(number_of_locations); std::iota(std::begin(location_ids), std::end(location_ids), 0); return SCC_Component(location_ids); } }(); using NodeIDIterator = typename std::vector::const_iterator; std::vector> res_route; TIMER_START(tsp); //run TSP computation for every SCC for(auto k = 0; k < scc.GetNumberOfComponents(); ++k) { const auto component_size = scc.component_range[k+1] - scc.component_range[k]; if (component_size > 1) { std::vector scc_route; NodeIDIterator start = std::begin(scc.component) + scc.component_range[k]; NodeIDIterator end = std::begin(scc.component) + scc.component_range[k+1]; // Compute the TSP with the given algorithm if (route_parameters.tsp_algo == "BF" && route_parameters.coordinates.size() < BF_MAX_FEASABLE) { SimpleLogger().Write() << "Running brute force"; scc_route = osrm::tsp::BruteForceTSP(start, end, number_of_locations, result_table); res_route.push_back(scc_route); } else if (route_parameters.tsp_algo == "NN") { SimpleLogger().Write() << "Running nearest neighbour"; scc_route = osrm::tsp::NearestNeighbourTSP(start, end, number_of_locations, result_table); res_route.push_back(scc_route); } else if (route_parameters.tsp_algo == "FI") { SimpleLogger().Write() << "Running farthest insertion"; scc_route = osrm::tsp::FarthestInsertionTSP(start, end, number_of_locations, result_table); res_route.push_back(scc_route); } else{ SimpleLogger().Write() << "Running farthest insertion"; scc_route = osrm::tsp::FarthestInsertionTSP(start, end, number_of_locations, result_table); res_route.push_back(scc_route); } SimpleLogger().Write() << "Route #" << k << ": " << [&scc_route](){ std::string s = ""; for (auto x : scc_route) { s += std::to_string(x) + " "; } return s; }(); } } std::vector comp_route (res_route.size()); for (auto r = 0; r < res_route.size(); ++r) { ComputeRoute(phantom_node_vector, route_parameters, res_route[r], comp_route[r]); } TIMER_STOP(tsp); SetRuntimeOutput(TIMER_MSEC(tsp), json_result); //TODO SetLocPermutationOutput(res_route[0], json_result); std::unique_ptr> descriptor; descriptor = osrm::make_unique>(facade); descriptor->SetConfig(route_parameters); auto dist = 0; for (auto r : comp_route) { dist += r.shortest_path_length; // SetGeometry(route_parameters, r, json_result); descriptor->Run(r, json_result); } SetDistanceOutput(dist, json_result); return 200; } }; #endif // ROUND_TRIP_HPP