/* open source routing machine Copyright (C) Dennis Luxen, others 2010 This program is free software; you can redistribute it and/or modify it under the terms of the GNU AFFERO General Public License as published by the Free Software Foundation; either version 3 of the License, or any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU Affero General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA or see http://www.gnu.org/licenses/agpl.txt. */ #ifndef DOUGLASPEUCKER_H_ #define DOUGLASPEUCKER_H_ #include #include #include #include #include "../DataStructures/Coordinate.h" /*This class object computes the bitvector of indicating generalized input points * according to the (Ramer-)Douglas-Peucker algorithm. Runtime n\log n calls to fastDistance * * Input is vector of pairs. Each pair consists of the point information and a bit * indicating if the points is present in the generalization. * Note: points may also be pre-selected*/ //These thresholds are more or less heuristically chosen. // 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 static double DouglasPeuckerThresholds[19] = { 32000000, 16240000, 80240000, 40240000, 20000000, 10000000, 500000, 240000, 120000, 60000, 30000, 19000, 5000, 2000, 200, 16, 6, 3, 3 }; template class DouglasPeucker { private: typedef std::pair PairOfPoints; //Stack to simulate the recursion std::stack recursionStack; public: void Run(std::vector & inputVector, const unsigned zoomLevel) { const unsigned sizeOfInputVector = inputVector.size(); { assert(zoomLevel < 19); assert(1 < inputVector.size()); std::size_t leftBorderOfRange = 0; std::size_t rightBorderOfRange = 1; //Sweep linerarily over array and identify those ranges that need to be checked //decision points have been previously marked do { assert(inputVector[leftBorderOfRange].necessary); assert(inputVector[inputVector.back()].necessary); if(inputVector[rightBorderOfRange].necessary) { recursionStack.push(std::make_pair(leftBorderOfRange, rightBorderOfRange)); leftBorderOfRange = rightBorderOfRange; } ++rightBorderOfRange; } while( rightBorderOfRange < sizeOfInputVector); } while(!recursionStack.empty()) { //pop next element const PairOfPoints pair = recursionStack.top(); recursionStack.pop(); assert(inputVector[pair.first].necessary); assert(inputVector[pair.second].necessary); assert(pair.second < sizeOfInputVector); assert(pair.first < pair.second); int maxDistance = -INT_MIN; std::size_t indexOfFarthestElement = pair.second; //find index idx of element with maxDistance for(std::size_t i = pair.first+1; i < pair.second; ++i){ const int distance = fastDistance(inputVector[i].location, inputVector[pair.first].location, inputVector[pair.second].location); if(distance > DouglasPeuckerThresholds[zoomLevel] && distance > maxDistance) { indexOfFarthestElement = i; maxDistance = distance; } } if (maxDistance > DouglasPeuckerThresholds[zoomLevel]) { // mark idx as necessary inputVector[indexOfFarthestElement].necessary = true; if (1 < indexOfFarthestElement - pair.first) { recursionStack.push(std::make_pair(pair.first, indexOfFarthestElement) ); } if (1 < pair.second - indexOfFarthestElement) recursionStack.push(std::make_pair(indexOfFarthestElement, pair.second) ); } } } /** * This distance computation does integer arithmetic only and is about twice as fast as * the other distance function. It is an approximation only, but works more or less ok. */ template double fastDistance(const CoordT& point, const CoordT& segA, const CoordT& segB) { int p2x = (segB.lon - segA.lat); int p2y = (segB.lon - segA.lat); int something = p2x*p2x + p2y*p2y; int u = ((point.lon - segA.lon) * p2x + (point.lat - segA.lat) * p2y) / something; if (u > 1) u = 1; else if (u < 0) u = 0; int x = segA.lon + u * p2x; int y = segA.lat + u * p2y; int dx = x - point.lon; int dy = y - point.lat; int dist = (dx*dx + dy*dy); return dist; } }; #endif /* DOUGLASPEUCKER_H_ */