#ifndef OSRM_EXTRACTOR_GUIDANCE_INTERSECTION_HPP_ #define OSRM_EXTRACTOR_GUIDANCE_INTERSECTION_HPP_ #include #include #include #include #include #include #include "util/bearing.hpp" #include "util/log.hpp" #include "util/node_based_graph.hpp" #include "util/typedefs.hpp" // EdgeID #include "extractor/guidance/turn_instruction.hpp" #include #include #include namespace osrm { namespace extractor { namespace guidance { // the shape of an intersection only knows about edge IDs and bearings // `bearing` is the direction in clockwise angle from true north after taking the turn: // 0 = heading north, 90 = east, 180 = south, 270 = west struct IntersectionShapeData { EdgeID eid; double bearing; double segment_length; }; inline auto makeCompareShapeDataByBearing(const double base_bearing) { return [base_bearing](const auto &lhs, const auto &rhs) { return util::angularDeviation(lhs.bearing, base_bearing) < util::angularDeviation(rhs.bearing, base_bearing); }; } inline auto makeCompareShapeDataAngleToBearing(const double base_bearing) { return [base_bearing](const auto &lhs, const auto &rhs) { return util::bearing::angleBetween(lhs.bearing, base_bearing) < util::bearing::angleBetween(rhs.bearing, base_bearing); }; } inline auto makeCompareAngularDeviation(const double angle) { return [angle](const auto &lhs, const auto &rhs) { return util::angularDeviation(lhs.angle, angle) < util::angularDeviation(rhs.angle, angle); }; } inline auto makeExtractLanesForRoad(const util::NodeBasedDynamicGraph &node_based_graph) { return [&node_based_graph](const auto &road) { return node_based_graph.GetEdgeData(road.eid).road_classification.GetNumberOfLanes(); }; } // When viewing an intersection from an incoming edge, we can transform a shape into a view which // gives additional information on angles and whether a turn is allowed struct IntersectionViewData : IntersectionShapeData { IntersectionViewData(const IntersectionShapeData &shape, const bool entry_allowed, const double angle) : IntersectionShapeData(shape), entry_allowed(entry_allowed), angle(angle) { } bool entry_allowed; double angle; bool CompareByAngle(const IntersectionViewData &other) const; }; // A Connected Road is the internal representation of a potential turn. Internally, we require // full list of all connected roads to determine the outcome. // The reasoning behind is that even invalid turns can influence the perceived angles, or even // instructions themselves. An possible example can be described like this: // // aaa(2)aa // a - bbbbb // aaa(1)aa // // will not be perceived as a turn from (1) -> b, and as a U-turn from (1) -> (2). // In addition, they can influence whether a turn is obvious or not. b->(2) would also be no // turn-operation, but rather a name change. // // If this were a normal intersection with // // cccccccc // o bbbbb // aaaaaaaa // // We would perceive a->c as a sharp turn, a->b as a slight turn, and b->c as a slight turn. struct ConnectedRoad final : IntersectionViewData { ConnectedRoad(const IntersectionViewData &view, const TurnInstruction instruction, const LaneDataID lane_data_id) : IntersectionViewData(view), instruction(instruction), lane_data_id(lane_data_id) { } TurnInstruction instruction; LaneDataID lane_data_id; // used to sort the set of connected roads (we require sorting throughout turn handling) bool compareByAngle(const ConnectedRoad &other) const; // make a left turn into an equivalent right turn and vice versa void mirror(); OSRM_ATTR_WARN_UNUSED ConnectedRoad getMirroredCopy() const; }; // small helper function to print the content of a connected road std::string toString(const IntersectionShapeData &shape); std::string toString(const IntersectionViewData &view); std::string toString(const ConnectedRoad &road); // Intersections are sorted roads: [0] being the UTurn road, then from sharp right to sharp left. // common operations shared amongst all intersection types template struct EnableShapeOps { // same as closest turn, but for bearings auto FindClosestBearing(double bearing) const { auto comp = makeCompareShapeDataByBearing(bearing); return std::min_element(self()->begin(), self()->end(), comp); } // search a given eid in the intersection auto FindEid(const EdgeID eid) const { return boost::range::find_if(*self(), [eid](const auto &road) { return road.eid == eid; }); } // find the maximum value based on a conversion operator template auto FindMaximum(UnaryProjection converter) const { BOOST_ASSERT(!self()->empty()); auto initial = converter(self()->front()); const auto extract_maximal_value = [&initial, converter](const auto &road) { initial = std::max(initial, converter(road)); return false; }; boost::range::find_if(*self(), extract_maximal_value); return initial; } // find the maximum value based on a conversion operator and a predefined initial value template auto Count(UnaryPredicate detector) const { BOOST_ASSERT(!self()->empty()); return boost::range::count_if(*self(), detector); } private: auto self() { return static_cast(this); } auto self() const { return static_cast(this); } }; struct IntersectionShape final : std::vector, // EnableShapeOps // { using Base = std::vector; }; // Common operations shared among IntersectionView and Intersections. // Inherit to enable those operations on your compatible type. CRTP pattern. template struct EnableIntersectionOps { // Find the turn whose angle offers the least angular deviation to the specified angle // For turn angles [0, 90, 260] and a query of 180 we return the 260 degree turn. auto findClosestTurn(double angle) const { auto comp = makeCompareAngularDeviation(angle); return boost::range::min_element(*self(), comp); } // returns a non-const_interator auto findClosestTurn(double angle) { auto comp = makeCompareAngularDeviation(angle); return std::min_element(self()->begin(), self()->end(), comp); } /* Check validity of the intersection object. We assume a few basic properties every set of * connected roads should follow throughout guidance pre-processing. This utility function * allows checking intersections for validity */ auto valid() const { if (self()->empty()) return false; auto comp = [](const auto &lhs, const auto &rhs) { return lhs.CompareByAngle(rhs); }; const auto ordered = std::is_sorted(self()->begin(), self()->end(), comp); if (!ordered) return false; const auto uturn = self()->operator[](0).angle < std::numeric_limits::epsilon(); if (!uturn) return false; return true; } // Returns the UTurn road we took to arrive at this intersection. const auto &getUTurnRoad() const { return self()->operator[](0); } // Returns the right-most road at this intersection. const auto &getRightmostRoad() const { return self()->size() > 1 ? self()->operator[](1) : self()->getUTurnRoad(); } // Returns the left-most road at this intersection. const auto &getLeftmostRoad() const { return self()->size() > 1 ? self()->back() : self()->getUTurnRoad(); } // Can this be skipped over? auto isTrafficSignalOrBarrier() const { return self()->size() == 2; } // Checks if there is at least one road available (except UTurn road) on which to continue. auto isDeadEnd() const { auto pred = [](const auto &road) { return road.entry_allowed; }; return std::none_of(self()->begin() + 1, self()->end(), pred); } // Returns the number of roads we can enter at this intersection, respectively. auto countEnterable() const { auto pred = [](const auto &road) { return road.entry_allowed; }; return boost::range::count_if(*self(), pred); } // Returns the number of roads we can not enter at this intersection, respectively. auto countNonEnterable() const { return self()->size() - self()->countEnterable(); } // same as find closests turn but with an additional predicate to allow filtering // the filter has to return `true` for elements that should be ignored template auto findClosestTurn(const double angle, const UnaryPredicate filter) const { BOOST_ASSERT(!self()->empty()); const auto candidate = boost::range::min_element(*self(), [angle, &filter](const auto &lhs, const auto &rhs) { const auto filtered_lhs = filter(lhs), filtered_rhs = filter(rhs); const auto deviation_lhs = util::angularDeviation(lhs.angle, angle), deviation_rhs = util::angularDeviation(rhs.angle, angle); return std::tie(filtered_lhs, deviation_lhs) < std::tie(filtered_rhs, deviation_rhs); }); // make sure only to return valid elements return filter(*candidate) ? self()->end() : candidate; } // check if all roads between begin and end allow entry template bool hasAllValidEntries(const InputIt begin, const InputIt end) const { static_assert( std::is_base_of::iterator_category>::value, "hasAllValidEntries() only accepts input iterators"); return std::all_of( begin, end, [](const IntersectionViewData &road) { return road.entry_allowed; }); } private: auto self() { return static_cast(this); } auto self() const { return static_cast(this); } }; struct IntersectionView final : std::vector, // EnableShapeOps, // EnableIntersectionOps // { using Base = std::vector; }; // `Intersection` is a relative view of an intersection by an incoming edge. // `Intersection` are streets at an intersection ordered from from sharp right counter-clockwise to // sharp left where `intersection[0]` is _always_ a u-turn // An intersection is an ordered list of connected roads ordered from from sharp right // counter-clockwise to sharp left where `intersection[0]` is always a u-turn // // | // | // (intersec[3]) // | // | // | // nid ---(via_eid/intersec[0])--- nbg.GetTarget(via) ---(intersec[2])--- // | // | // | // (intersec[1]) // | // | // // intersec := intersection // nbh := node_based_graph // struct Intersection final : std::vector, // EnableShapeOps, // EnableIntersectionOps // { using Base = std::vector; }; } // namespace guidance } // namespace extractor } // namespace osrm #endif /*OSRM_EXTRACTOR_GUIDANCE_INTERSECTION_HPP_*/