#ifndef OSRM_GUIDANCE_TOOLKIT_HPP_ #define OSRM_GUIDANCE_TOOLKIT_HPP_ #include "util/attributes.hpp" #include "util/bearing.hpp" #include "util/coordinate.hpp" #include "util/coordinate_calculation.hpp" #include "util/guidance/toolkit.hpp" #include "util/guidance/turn_lanes.hpp" #include "util/typedefs.hpp" #include "extractor/compressed_edge_container.hpp" #include "extractor/query_node.hpp" #include "extractor/suffix_table.hpp" #include "extractor/guidance/discrete_angle.hpp" #include "extractor/guidance/intersection.hpp" #include "extractor/guidance/turn_instruction.hpp" #include #include #include #include #include #include #include #include #include #include #include namespace osrm { namespace extractor { namespace guidance { using util::guidance::LaneTupelIdPair; using LaneDataIdMap = std::unordered_map>; using util::guidance::angularDeviation; using util::guidance::entersRoundabout; using util::guidance::leavesRoundabout; namespace detail { const constexpr double DESIRED_SEGMENT_LENGTH = 10.0; template util::Coordinate getCoordinateFromCompressedRange(util::Coordinate current_coordinate, const IteratorType compressed_geometry_begin, const IteratorType compressed_geometry_end, const util::Coordinate final_coordinate, const std::vector &query_nodes) { const auto extractCoordinateFromNode = [](const extractor::QueryNode &node) -> util::Coordinate { return {node.lon, node.lat}; }; double distance_to_current_coordinate = 0; double distance_to_next_coordinate = 0; // get the length that is missing from the current segment to reach DESIRED_SEGMENT_LENGTH const auto getFactor = [](const double first_distance, const double second_distance) { BOOST_ASSERT(first_distance < detail::DESIRED_SEGMENT_LENGTH); double segment_length = second_distance - first_distance; BOOST_ASSERT(segment_length > 0); BOOST_ASSERT(second_distance >= detail::DESIRED_SEGMENT_LENGTH); double missing_distance = detail::DESIRED_SEGMENT_LENGTH - first_distance; return std::max(0., std::min(missing_distance / segment_length, 1.0)); }; for (auto compressed_geometry_itr = compressed_geometry_begin; compressed_geometry_itr != compressed_geometry_end; ++compressed_geometry_itr) { const auto next_coordinate = extractCoordinateFromNode(query_nodes[compressed_geometry_itr->node_id]); distance_to_next_coordinate = distance_to_current_coordinate + util::coordinate_calculation::haversineDistance(current_coordinate, next_coordinate); // reached point where coordinates switch between if (distance_to_next_coordinate >= detail::DESIRED_SEGMENT_LENGTH) return util::coordinate_calculation::interpolateLinear( getFactor(distance_to_current_coordinate, distance_to_next_coordinate), current_coordinate, next_coordinate); // prepare for next iteration current_coordinate = next_coordinate; distance_to_current_coordinate = distance_to_next_coordinate; } distance_to_next_coordinate = distance_to_current_coordinate + util::coordinate_calculation::haversineDistance(current_coordinate, final_coordinate); // reached point where coordinates switch between if (distance_to_current_coordinate < detail::DESIRED_SEGMENT_LENGTH && distance_to_next_coordinate >= detail::DESIRED_SEGMENT_LENGTH) return util::coordinate_calculation::interpolateLinear( getFactor(distance_to_current_coordinate, distance_to_next_coordinate), current_coordinate, final_coordinate); else return final_coordinate; } } // namespace detail // Finds a (potentially interpolated) coordinate that is DESIRED_SEGMENT_LENGTH away // from the start of an edge inline util::Coordinate getRepresentativeCoordinate(const NodeID from_node, const NodeID to_node, const EdgeID via_edge_id, const bool traverse_in_reverse, const extractor::CompressedEdgeContainer &compressed_geometries, const std::vector &query_nodes) { const auto extractCoordinateFromNode = [](const extractor::QueryNode &node) -> util::Coordinate { return {node.lon, node.lat}; }; // Uncompressed roads are simple, return the coordinate at the end if (!compressed_geometries.HasEntryForID(via_edge_id)) { return extractCoordinateFromNode(traverse_in_reverse ? query_nodes[from_node] : query_nodes[to_node]); } else { const auto &geometry = compressed_geometries.GetBucketReference(via_edge_id); const auto base_node_id = (traverse_in_reverse) ? to_node : from_node; const auto base_coordinate = extractCoordinateFromNode(query_nodes[base_node_id]); const auto final_node = (traverse_in_reverse) ? from_node : to_node; const auto final_coordinate = extractCoordinateFromNode(query_nodes[final_node]); if (traverse_in_reverse) return detail::getCoordinateFromCompressedRange( base_coordinate, geometry.rbegin(), geometry.rend(), final_coordinate, query_nodes); else return detail::getCoordinateFromCompressedRange( base_coordinate, geometry.begin(), geometry.end(), final_coordinate, query_nodes); } } inline std::pair getPrefixAndSuffix(const std::string &data) { const auto suffix_pos = data.find_last_of(' '); if (suffix_pos == std::string::npos) return {}; const auto prefix_pos = data.find_first_of(' '); auto result = std::make_pair(data.substr(0, prefix_pos), data.substr(suffix_pos + 1)); boost::to_lower(result.first); boost::to_lower(result.second); return result; } inline bool requiresNameAnnounced(const std::string &from, const std::string &to, const SuffixTable &suffix_table) { // first is empty and the second is not if (from.empty() && !to.empty()) return true; // FIXME, handle in profile to begin with? // this uses the encoding of references in the profile, which is very BAD // Input for this function should be a struct separating streetname, suffix (e.g. road, // boulevard, North, West ...), and a list of references std::string from_name; std::string from_ref; std::string to_name; std::string to_ref; // Split from the format "{name} ({ref})" -> name, ref auto split = [](const std::string &name, std::string &out_name, std::string &out_ref) { const auto ref_begin = name.find_first_of('('); if (ref_begin != std::string::npos) { if (ref_begin != 0) out_name = name.substr(0, ref_begin - 1); const auto ref_end = name.find_first_of(')'); out_ref = name.substr(ref_begin + 1, ref_end - ref_begin - 1); } else { out_name = name; } }; split(from, from_name, from_ref); split(to, to_name, to_ref); // check similarity of names const auto names_are_empty = from_name.empty() && to_name.empty(); const auto name_is_contained = boost::starts_with(from_name, to_name) || boost::starts_with(to_name, from_name); const auto checkForPrefixOrSuffixChange = [](const std::string &first, const std::string &second, const SuffixTable &suffix_table) { const auto first_prefix_and_suffixes = getPrefixAndSuffix(first); const auto second_prefix_and_suffixes = getPrefixAndSuffix(second); // reverse strings, get suffices and reverse them to get prefixes const auto checkTable = [&](const std::string str) { return str.empty() || suffix_table.isSuffix(str); }; const bool is_prefix_change = [&]() -> bool { if (!checkTable(first_prefix_and_suffixes.first)) return false; if (!checkTable(first_prefix_and_suffixes.first)) return false; return !first.compare(first_prefix_and_suffixes.first.length(), std::string::npos, second, second_prefix_and_suffixes.first.length(), std::string::npos); }(); const bool is_suffix_change = [&]() -> bool { if (!checkTable(first_prefix_and_suffixes.second)) return false; if (!checkTable(first_prefix_and_suffixes.second)) return false; return !first.compare(0, first.length() - first_prefix_and_suffixes.second.length(), second, 0, second.length() - second_prefix_and_suffixes.second.length()); }(); return is_prefix_change || is_suffix_change; }; const auto is_suffix_change = checkForPrefixOrSuffixChange(from_name, to_name, suffix_table); const auto names_are_equal = from_name == to_name || name_is_contained || is_suffix_change; const auto name_is_removed = !from_name.empty() && to_name.empty(); // references are contained in one another const auto refs_are_empty = from_ref.empty() && to_ref.empty(); const auto ref_is_contained = from_ref.empty() || to_ref.empty() || (from_ref.find(to_ref) != std::string::npos || to_ref.find(from_ref) != std::string::npos); const auto ref_is_removed = !from_ref.empty() && to_ref.empty(); const auto obvious_change = (names_are_empty && refs_are_empty) || (names_are_equal && ref_is_contained) || (names_are_equal && refs_are_empty) || (ref_is_contained && name_is_removed) || (names_are_equal && ref_is_removed) || is_suffix_change; return !obvious_change; } // To simplify handling of Left/Right hand turns, we can mirror turns and write an intersection // handler only for one side. The mirror function turns a left-hand turn in a equivalent right-hand // turn and vice versa. OSRM_ATTR_WARN_UNUSED inline ConnectedRoad mirror(ConnectedRoad road) { const constexpr DirectionModifier::Enum mirrored_modifiers[] = {DirectionModifier::UTurn, DirectionModifier::SharpLeft, DirectionModifier::Left, DirectionModifier::SlightLeft, DirectionModifier::Straight, DirectionModifier::SlightRight, DirectionModifier::Right, DirectionModifier::SharpRight}; if (angularDeviation(road.turn.angle, 0) > std::numeric_limits::epsilon()) { road.turn.angle = 360 - road.turn.angle; road.turn.instruction.direction_modifier = mirrored_modifiers[road.turn.instruction.direction_modifier]; } return road; } inline bool hasRoundaboutType(const TurnInstruction instruction) { using namespace extractor::guidance::TurnType; const constexpr TurnType::Enum valid_types[] = {TurnType::EnterRoundabout, TurnType::EnterAndExitRoundabout, TurnType::EnterRotary, TurnType::EnterAndExitRotary, TurnType::EnterRoundaboutIntersection, TurnType::EnterAndExitRoundaboutIntersection, TurnType::EnterRoundaboutAtExit, TurnType::ExitRoundabout, TurnType::EnterRotaryAtExit, TurnType::ExitRotary, TurnType::EnterRoundaboutIntersectionAtExit, TurnType::ExitRoundaboutIntersection, TurnType::StayOnRoundabout}; const auto valid_end = valid_types + 13; return std::find(valid_types, valid_end, instruction.type) != valid_end; } // Public service vehicle lanes and similar can introduce additional lanes into the lane string that // are not specifically marked for left/right turns. This function can be used from the profile to // trim the lane string appropriately // // left|throught| // in combination with lanes:psv:forward=1 // will be corrected to left|throught, since the final lane is not drivable. // This is in contrast to a situation with lanes:psv:forward=0 (or not set) where left|through| // represents left|through|through OSRM_ATTR_WARN_UNUSED inline std::string trimLaneString(std::string lane_string, std::int32_t count_left, std::int32_t count_right) { if (count_left) { bool sane = count_left < static_cast(lane_string.size()); for (std::int32_t i = 0; i < count_left; ++i) // this is adjusted for our fake pipe. The moment cucumber can handle multiple escaped // pipes, the '&' part can be removed if (lane_string[i] != '|' && lane_string[i] != '&') { sane = false; break; } if (sane) { lane_string.erase(lane_string.begin(), lane_string.begin() + count_left); } } if (count_right) { bool sane = count_right < static_cast(lane_string.size()); for (auto itr = lane_string.rbegin(); itr != lane_string.rend() && itr != lane_string.rbegin() + count_right; ++itr) { if (*itr != '|' && *itr != '&') { sane = false; break; } } if (sane) lane_string.resize(lane_string.size() - count_right); } return lane_string; } // https://github.com/Project-OSRM/osrm-backend/issues/2638 // It can happen that some lanes are not drivable by car. Here we handle this tagging scheme // (vehicle:lanes) to filter out not-allowed roads // lanes=3 // turn:lanes=left|through|through|right // vehicle:lanes=yes|yes|no|yes // bicycle:lanes=yes|no|designated|yes OSRM_ATTR_WARN_UNUSED inline std::string applyAccessTokens(std::string lane_string, const std::string &access_tokens) { typedef boost::tokenizer> tokenizer; boost::char_separator sep("|", "", boost::keep_empty_tokens); tokenizer tokens(lane_string, sep); tokenizer access(access_tokens, sep); // strings don't match, don't do anything if (std::distance(std::begin(tokens), std::end(tokens)) != std::distance(std::begin(access), std::end(access))) return lane_string; std::string result_string = ""; const static std::string yes = "yes"; for (auto token_itr = std::begin(tokens), access_itr = std::begin(access); token_itr != std::end(tokens); ++token_itr, ++access_itr) { if (*access_itr == yes) { // we have to add this in front, because the next token could be invalid. Doing this on // non-empty strings makes sure that the token string will be valid in the end if (!result_string.empty()) result_string += '|'; result_string += *token_itr; } } return result_string; } } // namespace guidance } // namespace extractor } // namespace osrm #endif // OSRM_GUIDANCE_TOOLKIT_HPP_