/* open source routing machine Copyright (C) Dennis Luxen, others 2010 This program is free software; you can redistribute it and/or modify it under the terms of the GNU AFFERO General Public License as published by the Free Software Foundation; either version 3 of the License, or any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU Affero General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA or see http://www.gnu.org/licenses/agpl.txt. */ #ifndef SHORTESTPATHROUTING_H_ #define SHORTESTPATHROUTING_H_ #include "BasicRoutingInterface.h" template class ShortestPathRouting : public BasicRoutingInterface{ typedef BasicRoutingInterface super; public: ShortestPathRouting(QueryDataT & qd) : super(qd) {} ~ShortestPathRouting() {} void operator()(std::vector & phantomNodesVector, RawRouteData & rawRouteData) { BOOST_FOREACH(PhantomNodes & phantomNodePair, phantomNodesVector) { if(!phantomNodePair.AtLeastOnePhantomNodeIsUINTMAX()) { rawRouteData.lengthOfShortestPath = rawRouteData.lengthOfAlternativePath = INT_MAX; return; } } int distance1 = 0; int distance2 = 0; bool searchFrom1stStartNode(true); bool searchFrom2ndStartNode(true); NodeID middle1 = ( NodeID ) UINT_MAX; NodeID middle2 = ( NodeID ) UINT_MAX; std::deque packedPath1; std::deque packedPath2; typename QueryDataT::HeapPtr & forwardHeap = super::_queryData.forwardHeap; typename QueryDataT::HeapPtr & backwardHeap = super::_queryData.backwardHeap; typename QueryDataT::HeapPtr & forwardHeap2 = super::_queryData.forwardHeap2; typename QueryDataT::HeapPtr & backwardHeap2 = super::_queryData.backwardHeap2; //Get distance to next pair of target nodes. BOOST_FOREACH(PhantomNodes & phantomNodePair, phantomNodesVector) { super::_queryData.InitializeOrClearFirstThreadLocalStorage(); super::_queryData.InitializeOrClearSecondThreadLocalStorage(); int _localUpperbound1 = INT_MAX; int _localUpperbound2 = INT_MAX; //insert new starting nodes into forward heap, adjusted by previous distances. if(searchFrom1stStartNode) { forwardHeap->Insert(phantomNodePair.startPhantom.edgeBasedNode, -phantomNodePair.startPhantom.weight1, phantomNodePair.startPhantom.edgeBasedNode); forwardHeap2->Insert(phantomNodePair.startPhantom.edgeBasedNode, -phantomNodePair.startPhantom.weight1, phantomNodePair.startPhantom.edgeBasedNode); // INFO("a 1,2)forw insert " << phantomNodePair.startPhantom.edgeBasedNode << " with weight " << phantomNodePair.startPhantom.weight1); // } else { // INFO("Skipping first start node"); } if(phantomNodePair.startPhantom.isBidirected() && searchFrom2ndStartNode) { forwardHeap->Insert(phantomNodePair.startPhantom.edgeBasedNode+1, -phantomNodePair.startPhantom.weight2, phantomNodePair.startPhantom.edgeBasedNode+1); forwardHeap2->Insert(phantomNodePair.startPhantom.edgeBasedNode+1, -phantomNodePair.startPhantom.weight2, phantomNodePair.startPhantom.edgeBasedNode+1); // INFO("b 1,2)forw insert " << phantomNodePair.startPhantom.edgeBasedNode+1 << " with weight " << -phantomNodePair.startPhantom.weight1); // } else if(!searchFrom2ndStartNode) { // INFO("Skipping second start node"); } // backwardHeap->Clear(); // backwardHeap2->Clear(); //insert new backward nodes into backward heap, unadjusted. backwardHeap->Insert(phantomNodePair.targetPhantom.edgeBasedNode, phantomNodePair.targetPhantom.weight1, phantomNodePair.targetPhantom.edgeBasedNode); // INFO("1) back insert " << phantomNodePair.targetPhantom.edgeBasedNode << " with weight " << phantomNodePair.targetPhantom.weight1); if(phantomNodePair.targetPhantom.isBidirected() ) { // INFO("2) back insert " << phantomNodePair.targetPhantom.edgeBasedNode+1 << " with weight " << phantomNodePair.targetPhantom.weight2); backwardHeap2->Insert(phantomNodePair.targetPhantom.edgeBasedNode+1, phantomNodePair.targetPhantom.weight2, phantomNodePair.targetPhantom.edgeBasedNode+1); } int offset = (phantomNodePair.startPhantom.isBidirected() ? std::max(phantomNodePair.startPhantom.weight1, phantomNodePair.startPhantom.weight2) : phantomNodePair.startPhantom.weight1) ; offset += (phantomNodePair.targetPhantom.isBidirected() ? std::max(phantomNodePair.targetPhantom.weight1, phantomNodePair.targetPhantom.weight2) : phantomNodePair.targetPhantom.weight1) ; //run two-Target Dijkstra routing step. while(forwardHeap->Size() + backwardHeap->Size() > 0){ if(forwardHeap->Size() > 0){ super::RoutingStep(forwardHeap, backwardHeap, &middle1, &_localUpperbound1, 2*offset, true); } if(backwardHeap->Size() > 0){ super::RoutingStep(backwardHeap, forwardHeap, &middle1, &_localUpperbound1, 2*offset, false); } } if(backwardHeap2->Size() > 0) { while(forwardHeap2->Size() + backwardHeap2->Size() > 0){ if(forwardHeap2->Size() > 0){ super::RoutingStep(forwardHeap2, backwardHeap2, &middle2, &_localUpperbound2, 2*offset, true); } if(backwardHeap2->Size() > 0){ super::RoutingStep(backwardHeap2, forwardHeap2, &middle2, &_localUpperbound2, 2*offset, false); } } } // INFO("upperbound1: " << _localUpperbound1 << ", distance1: " << distance1); // INFO("upperbound2: " << _localUpperbound2 << ", distance2: " << distance2); //No path found for both target nodes? if(INT_MAX == _localUpperbound1 && INT_MAX == _localUpperbound2) { rawRouteData.lengthOfShortestPath = rawRouteData.lengthOfAlternativePath = INT_MAX; return; } if(UINT_MAX == middle1) { searchFrom1stStartNode = false; // INFO("Next Search will not start from 1st"); } else { // INFO("Next Search will start from 1st"); searchFrom1stStartNode = true; } if(UINT_MAX == middle2) { searchFrom2ndStartNode = false; // INFO("Next Search will not start from 2nd"); } else { searchFrom2ndStartNode = true; // INFO("Next Search will start from 2nd"); } //Was at most one of the two paths not found? assert(!(INT_MAX == distance1 && INT_MAX == distance2)); // INFO("middle1: " << middle1); //Unpack paths if they exist std::deque temporaryPackedPath1; std::deque temporaryPackedPath2; if(INT_MAX != _localUpperbound1) { super::RetrievePackedPathFromHeap(forwardHeap, backwardHeap, middle1, temporaryPackedPath1); // INFO("temporaryPackedPath1 ends with " << *(temporaryPackedPath1.end()-1) ); } // INFO("middle2: " << middle2); if(INT_MAX != _localUpperbound2) { super::RetrievePackedPathFromHeap(forwardHeap2, backwardHeap2, middle2, temporaryPackedPath2); // INFO("temporaryPackedPath2 ends with " << *(temporaryPackedPath2.end()-1) ); } //if one of the paths was not found, replace it with the other one. if(0 == temporaryPackedPath1.size()) { // INFO("Deleting path 1"); temporaryPackedPath1.insert(temporaryPackedPath1.end(), temporaryPackedPath2.begin(), temporaryPackedPath2.end()); _localUpperbound1 = _localUpperbound2; } if(0 == temporaryPackedPath2.size()) { // INFO("Deleting path 2"); temporaryPackedPath2.insert(temporaryPackedPath2.end(), temporaryPackedPath1.begin(), temporaryPackedPath1.end()); _localUpperbound2 = _localUpperbound1; } assert(0 < temporaryPackedPath1.size() && 0 < temporaryPackedPath2.size()); //Plug paths together, s.t. end of packed path is begin of temporary packed path if(0 < packedPath1.size() && 0 < packedPath2.size() ) { // INFO("Both paths are non-empty"); if( *(temporaryPackedPath1.begin()) == *(temporaryPackedPath2.begin())) { // INFO("both paths start with the same node:" << *(temporaryPackedPath1.begin())); //both new route segments start with the same node, thus one of the packedPath must go. assert( (packedPath1.size() == packedPath2.size() ) || (*(packedPath1.end()-1) != *(packedPath2.end()-1)) ); if( *(packedPath1.end()-1) == *(temporaryPackedPath1.begin())) { // INFO("Deleting packedPath2 that ends with " << *(packedPath2.end()-1) << ", other ends with " << *(packedPath1.end()-1)); packedPath2.clear(); packedPath2.insert(packedPath2.end(), packedPath1.begin(), packedPath1.end()); distance2 = distance1; // INFO("packedPath2 now ends with " << *(packedPath2.end()-1)); } else { // INFO("Deleting path1 that ends with " << *(packedPath1.end()-1) << ", other ends with " << *(packedPath2.end()-1)); packedPath1.clear(); packedPath1.insert(packedPath1.end(), packedPath2.begin(), packedPath2.end()); distance1 = distance2; // INFO("Path1 now ends with " << *(packedPath1.end()-1)); } } else { //packed paths 1 and 2 may need to switch. if(*(packedPath1.end()-1) != *(temporaryPackedPath1.begin())) { // INFO("Switching"); packedPath1.swap(packedPath2); std::swap(distance1, distance2); } } } packedPath1.insert(packedPath1.end(), temporaryPackedPath1.begin(), temporaryPackedPath1.end()); packedPath2.insert(packedPath2.end(), temporaryPackedPath2.begin(), temporaryPackedPath2.end()); if( (packedPath1.back() == packedPath2.back()) && phantomNodePair.targetPhantom.isBidirected() ) { // INFO("both paths end in same direction on bidirected edge, make sure start only start with : " << packedPath1.back()); NodeID lastNodeID = packedPath2.back(); searchFrom1stStartNode &= !(lastNodeID == phantomNodePair.targetPhantom.edgeBasedNode+1); searchFrom2ndStartNode &= !(lastNodeID == phantomNodePair.targetPhantom.edgeBasedNode); // INFO("Next search from node " << phantomNodePair.targetPhantom.edgeBasedNode << ": " << (searchFrom1stStartNode ? "yes" : "no") ); // INFO("Next search from node " << phantomNodePair.targetPhantom.edgeBasedNode+1 << ": " << (searchFrom2ndStartNode ? "yes" : "no") ); } distance1 += _localUpperbound1; distance2 += _localUpperbound2; } // INFO("length path1: " << distance1); // INFO("length path2: " << distance2); if(distance1 <= distance2){ //remove consecutive duplicates // std::cout << "unclean 1: "; // for(unsigned i = 0; i < packedPath1.size(); ++i) // std::cout << packedPath1[i] << " "; // std::cout << std::endl; // std::cout << "cleaned 1: "; // for(unsigned i = 0; i < packedPath1.size(); ++i) // std::cout << packedPath1[i] << " "; // std::cout << std::endl; // super::UnpackPath(packedPath1, rawRouteData.computedShortestPath); } else { std::swap(packedPath1, packedPath2); // std::cout << "unclean 2: "; // for(unsigned i = 0; i < packedPath2.size(); ++i) // std::cout << packedPath2[i] << " "; // std::cout << std::endl; // _RemoveConsecutiveDuplicatesFromContainer(packedPath2); // std::cout << "cleaned 2: "; // for(unsigned i = 0; i < packedPath2.size(); ++i) // std::cout << packedPath2[i] << " "; // std::cout << std::endl; // super::UnpackPath(packedPath2, unpackedPath); } _RemoveConsecutiveDuplicatesFromContainer(packedPath1); super::UnpackPath(packedPath1, rawRouteData.computedShortestPath); rawRouteData.lengthOfShortestPath = std::min(distance1, distance2); // INFO("Found via route with distance " << std::min(distance1, distance2)); return; } private: template void _RemoveConsecutiveDuplicatesFromContainer(ContainerT & packedPath) { //remove consecutive duplicates typename ContainerT::iterator it; // using default comparison: it = std::unique(packedPath.begin(), packedPath.end()); packedPath.resize(it - packedPath.begin()); } }; #endif /* SHORTESTPATHROUTING_H_ */