#include "engine/guidance/post_processing.hpp" #include "extractor/guidance/turn_instruction.hpp" #include "engine/guidance/toolkit.hpp" #include #include #include using TurnInstruction = osrm::extractor::guidance::TurnInstruction; using TurnType = osrm::extractor::guidance::TurnType; using DirectionModifier = osrm::extractor::guidance::DirectionModifier; namespace osrm { namespace engine { namespace guidance { namespace detail { bool canMergeTrivially(const RouteStep &destination, const RouteStep &source) { return destination.maneuver.exit == 0 && destination.name_id == source.name_id && isSilent(source.maneuver.instruction); } RouteStep forwardInto(RouteStep destination, const RouteStep &source) { // Merge a turn into a silent turn // Overwrites turn instruction and increases exit NR destination.duration += source.duration; destination.distance += source.distance; destination.geometry_begin = std::min( destination.geometry_begin, source.geometry_begin ); destination.geometry_end = std::max( destination.geometry_end, source.geometry_end ); return destination; } } // namespace detail void print(const std::vector &steps) { std::cout << "Path\n"; int segment = 0; for (const auto &step : steps) { const auto type = static_cast(step.maneuver.instruction.type); const auto modifier = static_cast(step.maneuver.instruction.direction_modifier); std::cout << "\t[" << ++segment << "]: " << type << " " << modifier << " Duration: " << step.duration << " Distance: " << step.distance << " Geometry: " << step.geometry_begin << " " << step.geometry_end << " exit: " << step.maneuver.exit << " Intersection: " << step.maneuver.intersection << " name[" << step.name_id << "]: " << step.name << std::endl; } } // Every Step Maneuver consists of the information until the turn. // This list contains a set of instructions, called silent, which should // not be part of the final output. // They are required for maintenance purposes. We can calculate the number // of exits to pass in a roundabout and the number of intersections // that we come across. std::vector postProcess(std::vector steps) { // the steps should always include the first/last step in form of a location BOOST_ASSERT(steps.size() >= 2); if (steps.size() == 2) return steps; #define PRINT_DEBUG 0 #if PRINT_DEBUG std::cout << "[POSTPROCESSING ITERATION]" << std::endl; std::cout << "Input\n"; print(steps); #endif // Count Street Exits forward bool on_roundabout = false; // count the exits forward. if enter/exit roundabout happen both, no further treatment is // required. We might end up with only one of them (e.g. starting within a roundabout) // or having a via-point in the roundabout. // In this case, exits are numbered from the start of the lag. std::size_t last_valid_instruction = 0; for (std::size_t step_index = 0; step_index < steps.size(); ++step_index) { auto &step = steps[step_index]; const auto instruction = step.maneuver.instruction; if (entersRoundabout(instruction)) { last_valid_instruction = step_index; // basic entry into a roundabout // Special case handling, if an entry is directly tied to an exit if (instruction.type == TurnType::EnterRotaryAtExit || instruction.type == TurnType::EnterRoundaboutAtExit) { step.maneuver.exit = 1; // prevent futher special case handling of these two. if (instruction.type == TurnType::EnterRotaryAtExit) step.maneuver.instruction = TurnType::EnterRotary; else step.maneuver.instruction = TurnType::EnterRoundabout; } if (leavesRoundabout(instruction)) { step.maneuver.exit = 1; // count the otherwise missing exit if (instruction.type == TurnType::EnterRotaryAtExit) step.maneuver.instruction = TurnType::EnterRotary; else step.maneuver.instruction = TurnType::EnterRoundabout; } else { on_roundabout = true; if (step_index + 1 < steps.size()) steps[step_index + 1].maneuver.exit = step.maneuver.exit; } } else if (instruction.type == TurnType::StayOnRoundabout) { // increase the exit number we require passing the exit step.maneuver.exit += 1; if (step_index + 1 < steps.size()) steps[step_index + 1].maneuver.exit = step.maneuver.exit; } else if (leavesRoundabout(instruction)) { // count the exit (0 based vs 1 based counting) step.maneuver.exit += 1; if (!on_roundabout) { // We reached a special case that requires the addition of a special route step in // the beginning. // We started in a roundabout, so to announce the exit, we move use the exit // instruction and // move it right to the beginning to make sure to immediately announce the exit. BOOST_ASSERT(leavesRoundabout(steps[1].maneuver.instruction) || steps[1].maneuver.instruction.type == TurnType::StayOnRoundabout); steps[0].geometry_end = 1; steps[1] = detail::forwardInto(steps[1], steps[0]); steps[0].duration = 0; steps[0].distance = 0; steps[1].maneuver.instruction.type = step.maneuver.instruction.type == TurnType::ExitRotary ? TurnType::EnterRotary : TurnType::EnterRoundabout; //remember the now enter-instruction as valid last_valid_instruction = 1; } // Normal exit from the roundabout, or exit from a previously fixed roundabout. // Propagate the index back to the entering // location and // prepare the current silent set of instructions for removal. if (step_index > 1) { // The very first route-step is head, so we cannot iterate past that one for (std::size_t propagation_index = step_index - 1; propagation_index > 0; --propagation_index) { auto &propagation_step = steps[propagation_index]; propagation_step = detail::forwardInto(propagation_step, steps[propagation_index + 1]); if (entersRoundabout(propagation_step.maneuver.instruction)) { // TODO at this point, we can remember the additional name for a rotary // This requires some initial thought on the data format, though propagation_step.maneuver.exit = step.maneuver.exit; propagation_step.geometry_end = step.geometry_end; propagation_step.name = step.name; propagation_step.name_id = step.name_id; break; } else { BOOST_ASSERT(propagation_step.maneuver.instruction.type = TurnType::StayOnRoundabout); propagation_step.maneuver.instruction = TurnInstruction::NO_TURN(); // mark intermediate instructions invalid } } // remove exit step.maneuver.instruction = TurnInstruction::NO_TURN(); } on_roundabout = false; } else if (instruction.type == TurnType::Suppressed) { // count intersections. We cannot use exit, since intersections can follow directly after a roundabout steps[last_valid_instruction].maneuver.intersection += 1; steps[last_valid_instruction] = detail::forwardInto(steps[last_valid_instruction], step); step.maneuver.instruction = TurnInstruction::NO_TURN(); } else if( !isSilent(instruction) ) { // Remember the last non silent instruction last_valid_instruction = step_index; } } // unterminated roundabout // Move backwards through the instructions until the start and remove the exit number // A roundabout without exit translates to enter-roundabout. if (on_roundabout) { for (std::size_t propagation_index = steps.size() - 1; propagation_index > 0; --propagation_index) { auto &propagation_step = steps[propagation_index]; if (entersRoundabout(propagation_step.maneuver.instruction)) { propagation_step.maneuver.exit = 0; break; } else if (propagation_step.maneuver.instruction == TurnType::StayOnRoundabout) { propagation_step.maneuver.instruction = TurnInstruction::NO_TURN(); // mark intermediate instructions invalid } } } // finally clean up the post-processed instructions. // Remove all, now NO_TURN instructions for the set of steps auto pos = steps.begin(); for (auto check = steps.begin(); check != steps.end(); ++check) { // keep valid instrucstions if (check->maneuver.instruction != TurnInstruction::NO_TURN() || check->maneuver.waypoint_type != WaypointType::None) { *pos = *check; ++pos; } } steps.erase(pos, steps.end()); #if PRINT_DEBUG std::cout << "Merged\n"; print(steps); #endif return steps; } } // namespace guidance } // namespace engine } // namespace osrm