#ifndef ROUTING_BASE_HPP #define ROUTING_BASE_HPP #include "extractor/guidance/turn_instruction.hpp" #include "engine/edge_unpacker.hpp" #include "engine/internal_route_result.hpp" #include "engine/search_engine_data.hpp" #include "util/coordinate_calculation.hpp" #include "util/guidance/turn_bearing.hpp" #include "util/typedefs.hpp" #include #include #include #include #include #include #include #include #include namespace osrm { namespace engine { namespace routing_algorithms { template class BasicRoutingInterface { private: using EdgeData = typename DataFacadeT::EdgeData; public: /* min_edge_offset is needed in case we use multiple nodes as start/target nodes with different (even negative) offsets. In that case the termination criterion is not correct anymore. Example: forward heap: a(-100), b(0), reverse heap: c(0), d(100) a --- d \ / / \ b --- c This is equivalent to running a bi-directional Dijkstra on the following graph: a --- d / \ / \ y x z \ / \ / b --- c The graph is constructed by inserting nodes y and z that are connected to the initial nodes using edges (y, a) with weight -100, (y, b) with weight 0 and, (d, z) with weight 100, (c, z) with weight 0 corresponding. Since we are dealing with a graph that contains _negative_ edges, we need to add an offset to the termination criterion. */ void RoutingStep(const DataFacadeT &facade, SearchEngineData::QueryHeap &forward_heap, SearchEngineData::QueryHeap &reverse_heap, NodeID &middle_node_id, std::int32_t &upper_bound, std::int32_t min_edge_offset, const bool forward_direction, const bool stalling, const bool force_loop_forward, const bool force_loop_reverse) const { const NodeID node = forward_heap.DeleteMin(); const std::int32_t weight = forward_heap.GetKey(node); if (reverse_heap.WasInserted(node)) { const std::int32_t new_weight = reverse_heap.GetKey(node) + weight; if (new_weight < upper_bound) { // if loops are forced, they are so at the source if ((force_loop_forward && forward_heap.GetData(node).parent == node) || (force_loop_reverse && reverse_heap.GetData(node).parent == node) || // in this case we are looking at a bi-directional way where the source // and target phantom are on the same edge based node new_weight < 0) { // check whether there is a loop present at the node for (const auto edge : facade.GetAdjacentEdgeRange(node)) { const EdgeData &data = facade.GetEdgeData(edge); bool forward_directionFlag = (forward_direction ? data.forward : data.backward); if (forward_directionFlag) { const NodeID to = facade.GetTarget(edge); if (to == node) { const EdgeWeight edge_weight = data.weight; const std::int32_t loop_weight = new_weight + edge_weight; if (loop_weight >= 0 && loop_weight < upper_bound) { middle_node_id = node; upper_bound = loop_weight; } } } } } else { BOOST_ASSERT(new_weight >= 0); middle_node_id = node; upper_bound = new_weight; } } } // make sure we don't terminate too early if we initialize the weight // for the nodes in the forward heap with the forward/reverse offset BOOST_ASSERT(min_edge_offset <= 0); if (weight + min_edge_offset > upper_bound) { forward_heap.DeleteAll(); return; } // Stalling if (stalling) { for (const auto edge : facade.GetAdjacentEdgeRange(node)) { const EdgeData &data = facade.GetEdgeData(edge); const bool reverse_flag = ((!forward_direction) ? data.forward : data.backward); if (reverse_flag) { const NodeID to = facade.GetTarget(edge); const EdgeWeight edge_weight = data.weight; BOOST_ASSERT_MSG(edge_weight > 0, "edge_weight invalid"); if (forward_heap.WasInserted(to)) { if (forward_heap.GetKey(to) + edge_weight < weight) { return; } } } } } for (const auto edge : facade.GetAdjacentEdgeRange(node)) { const EdgeData &data = facade.GetEdgeData(edge); bool forward_directionFlag = (forward_direction ? data.forward : data.backward); if (forward_directionFlag) { const NodeID to = facade.GetTarget(edge); const EdgeWeight edge_weight = data.weight; BOOST_ASSERT_MSG(edge_weight > 0, "edge_weight invalid"); const int to_weight = weight + edge_weight; // New Node discovered -> Add to Heap + Node Info Storage if (!forward_heap.WasInserted(to)) { forward_heap.Insert(to, to_weight, node); } // Found a shorter Path -> Update weight else if (to_weight < forward_heap.GetKey(to)) { // new parent forward_heap.GetData(to).parent = node; forward_heap.DecreaseKey(to, to_weight); } } } } inline EdgeWeight GetLoopWeight(const DataFacadeT &facade, NodeID node) const { EdgeWeight loop_weight = INVALID_EDGE_WEIGHT; for (auto edge : facade.GetAdjacentEdgeRange(node)) { const auto &data = facade.GetEdgeData(edge); if (data.forward) { const NodeID to = facade.GetTarget(edge); if (to == node) { loop_weight = std::min(loop_weight, data.weight); } } } return loop_weight; } template void UnpackPath(const DataFacadeT &facade, RandomIter packed_path_begin, RandomIter packed_path_end, const PhantomNodes &phantom_node_pair, std::vector &unpacked_path) const { const bool start_traversed_in_reverse = (*packed_path_begin != phantom_node_pair.source_phantom.forward_segment_id.id); const bool target_traversed_in_reverse = (*std::prev(packed_path_end) != phantom_node_pair.target_phantom.forward_segment_id.id); BOOST_ASSERT(std::distance(packed_path_begin, packed_path_end) > 0); BOOST_ASSERT(*packed_path_begin == phantom_node_pair.source_phantom.forward_segment_id.id || *packed_path_begin == phantom_node_pair.source_phantom.reverse_segment_id.id); BOOST_ASSERT( *std::prev(packed_path_end) == phantom_node_pair.target_phantom.forward_segment_id.id || *std::prev(packed_path_end) == phantom_node_pair.target_phantom.reverse_segment_id.id); UnpackCHPath( facade, packed_path_begin, packed_path_end, [this, &facade, &unpacked_path, &phantom_node_pair, &start_traversed_in_reverse, &target_traversed_in_reverse](std::pair & /* edge */, const EdgeData &edge_data) { BOOST_ASSERT_MSG(!edge_data.shortcut, "original edge flagged as shortcut"); const auto name_index = facade.GetNameIndexFromEdgeID(edge_data.id); const auto turn_instruction = facade.GetTurnInstructionForEdgeID(edge_data.id); const extractor::TravelMode travel_mode = (unpacked_path.empty() && start_traversed_in_reverse) ? phantom_node_pair.source_phantom.backward_travel_mode : facade.GetTravelModeForEdgeID(edge_data.id); const auto geometry_index = facade.GetGeometryIndexForEdgeID(edge_data.id); std::vector id_vector; std::vector weight_vector; std::vector datasource_vector; if (geometry_index.forward) { id_vector = facade.GetUncompressedForwardGeometry(geometry_index.id); weight_vector = facade.GetUncompressedForwardWeights(geometry_index.id); datasource_vector = facade.GetUncompressedForwardDatasources(geometry_index.id); } else { id_vector = facade.GetUncompressedReverseGeometry(geometry_index.id); weight_vector = facade.GetUncompressedReverseWeights(geometry_index.id); datasource_vector = facade.GetUncompressedReverseDatasources(geometry_index.id); } BOOST_ASSERT(id_vector.size() > 0); BOOST_ASSERT(weight_vector.size() > 0); BOOST_ASSERT(datasource_vector.size() > 0); const auto total_weight = std::accumulate(weight_vector.begin(), weight_vector.end(), 0); BOOST_ASSERT(weight_vector.size() == id_vector.size() - 1); const bool is_first_segment = unpacked_path.empty(); const std::size_t start_index = (is_first_segment ? ((start_traversed_in_reverse) ? weight_vector.size() - phantom_node_pair.source_phantom.fwd_segment_position - 1 : phantom_node_pair.source_phantom.fwd_segment_position) : 0); const std::size_t end_index = weight_vector.size(); BOOST_ASSERT(start_index >= 0); BOOST_ASSERT(start_index < end_index); for (std::size_t segment_idx = start_index; segment_idx < end_index; ++segment_idx) { unpacked_path.push_back( PathData{id_vector[segment_idx + 1], name_index, weight_vector[segment_idx], extractor::guidance::TurnInstruction::NO_TURN(), {{0, INVALID_LANEID}, INVALID_LANE_DESCRIPTIONID}, travel_mode, INVALID_ENTRY_CLASSID, datasource_vector[segment_idx], util::guidance::TurnBearing(0), util::guidance::TurnBearing(0)}); } BOOST_ASSERT(unpacked_path.size() > 0); if (facade.hasLaneData(edge_data.id)) unpacked_path.back().lane_data = facade.GetLaneData(edge_data.id); unpacked_path.back().entry_classid = facade.GetEntryClassID(edge_data.id); unpacked_path.back().turn_instruction = turn_instruction; unpacked_path.back().duration_until_turn += (edge_data.weight - total_weight); unpacked_path.back().pre_turn_bearing = facade.PreTurnBearing(edge_data.id); unpacked_path.back().post_turn_bearing = facade.PostTurnBearing(edge_data.id); }); std::size_t start_index = 0, end_index = 0; std::vector id_vector; std::vector weight_vector; std::vector datasource_vector; const bool is_local_path = (phantom_node_pair.source_phantom.packed_geometry_id == phantom_node_pair.target_phantom.packed_geometry_id) && unpacked_path.empty(); if (target_traversed_in_reverse) { id_vector = facade.GetUncompressedReverseGeometry( phantom_node_pair.target_phantom.packed_geometry_id); weight_vector = facade.GetUncompressedReverseWeights( phantom_node_pair.target_phantom.packed_geometry_id); datasource_vector = facade.GetUncompressedReverseDatasources( phantom_node_pair.target_phantom.packed_geometry_id); if (is_local_path) { start_index = weight_vector.size() - phantom_node_pair.source_phantom.fwd_segment_position - 1; } end_index = weight_vector.size() - phantom_node_pair.target_phantom.fwd_segment_position - 1; } else { if (is_local_path) { start_index = phantom_node_pair.source_phantom.fwd_segment_position; } end_index = phantom_node_pair.target_phantom.fwd_segment_position; id_vector = facade.GetUncompressedForwardGeometry( phantom_node_pair.target_phantom.packed_geometry_id); weight_vector = facade.GetUncompressedForwardWeights( phantom_node_pair.target_phantom.packed_geometry_id); datasource_vector = facade.GetUncompressedForwardDatasources( phantom_node_pair.target_phantom.packed_geometry_id); } // Given the following compressed geometry: // U---v---w---x---y---Z // s t // s: fwd_segment 0 // t: fwd_segment 3 // -> (U, v), (v, w), (w, x) // note that (x, t) is _not_ included but needs to be added later. for (std::size_t segment_idx = start_index; segment_idx != end_index; (start_index < end_index ? ++segment_idx : --segment_idx)) { BOOST_ASSERT(segment_idx < id_vector.size() - 1); BOOST_ASSERT(phantom_node_pair.target_phantom.forward_travel_mode > 0); unpacked_path.push_back(PathData{ id_vector[start_index < end_index ? segment_idx + 1 : segment_idx - 1], phantom_node_pair.target_phantom.name_id, weight_vector[segment_idx], extractor::guidance::TurnInstruction::NO_TURN(), {{0, INVALID_LANEID}, INVALID_LANE_DESCRIPTIONID}, target_traversed_in_reverse ? phantom_node_pair.target_phantom.backward_travel_mode : phantom_node_pair.target_phantom.forward_travel_mode, INVALID_ENTRY_CLASSID, datasource_vector[segment_idx], util::guidance::TurnBearing(0), util::guidance::TurnBearing(0)}); } if (unpacked_path.size() > 0) { const auto source_weight = start_traversed_in_reverse ? phantom_node_pair.source_phantom.reverse_weight : phantom_node_pair.source_phantom.forward_weight; // The above code will create segments for (v, w), (w,x), (x, y) and (y, Z). // However the first segment duration needs to be adjusted to the fact that the source // phantom is in the middle of the segment. We do this by subtracting v--s from the // duration. // Since it's possible duration_until_turn can be less than source_weight here if // a negative enough turn penalty is used to modify this edge weight during // osrm-contract, we clamp to 0 here so as not to return a negative duration // for this segment. // TODO this creates a scenario where it's possible the duration from a phantom // node to the first turn would be the same as from end to end of a segment, // which is obviously incorrect and not ideal... unpacked_path.front().duration_until_turn = std::max(unpacked_path.front().duration_until_turn - source_weight, 0); } // there is no equivalent to a node-based node in an edge-expanded graph. // two equivalent routes may start (or end) at different node-based edges // as they are added with the offset how much "weight" on the edge // has already been traversed. Depending on offset one needs to remove // the last node. if (unpacked_path.size() > 1) { const std::size_t last_index = unpacked_path.size() - 1; const std::size_t second_to_last_index = last_index - 1; if (unpacked_path[last_index].turn_via_node == unpacked_path[second_to_last_index].turn_via_node) { unpacked_path.pop_back(); } BOOST_ASSERT(!unpacked_path.empty()); } } /** * Unpacks a single edge (NodeID->NodeID) from the CH graph down to it's original non-shortcut * route. * @param from the node the CH edge starts at * @param to the node the CH edge finishes at * @param unpacked_path the sequence of original NodeIDs that make up the expanded CH edge */ void UnpackEdge(const DataFacadeT &facade, const NodeID from, const NodeID to, std::vector &unpacked_path) const { std::array path{{from, to}}; UnpackCHPath( facade, path.begin(), path.end(), [&unpacked_path](const std::pair &edge, const EdgeData & /* data */) { unpacked_path.emplace_back(edge.first); }); unpacked_path.emplace_back(to); } void RetrievePackedPathFromHeap(const SearchEngineData::QueryHeap &forward_heap, const SearchEngineData::QueryHeap &reverse_heap, const NodeID middle_node_id, std::vector &packed_path) const { RetrievePackedPathFromSingleHeap(forward_heap, middle_node_id, packed_path); std::reverse(packed_path.begin(), packed_path.end()); packed_path.emplace_back(middle_node_id); RetrievePackedPathFromSingleHeap(reverse_heap, middle_node_id, packed_path); } void RetrievePackedPathFromSingleHeap(const SearchEngineData::QueryHeap &search_heap, const NodeID middle_node_id, std::vector &packed_path) const { NodeID current_node_id = middle_node_id; // all initial nodes will have itself as parent, or a node not in the heap // in case of a core search heap. We need a distinction between core entry nodes // and start nodes since otherwise start node specific code that assumes // node == node.parent (e.g. the loop code) might get actived. while (current_node_id != search_heap.GetData(current_node_id).parent && search_heap.WasInserted(search_heap.GetData(current_node_id).parent)) { current_node_id = search_heap.GetData(current_node_id).parent; packed_path.emplace_back(current_node_id); } } // assumes that heaps are already setup correctly. // ATTENTION: This only works if no additional offset is supplied next to the Phantom Node // Offsets. // In case additional offsets are supplied, you might have to force a loop first. // A forced loop might be necessary, if source and target are on the same segment. // If this is the case and the offsets of the respective direction are larger for the source // than the target // then a force loop is required (e.g. source_phantom.forward_segment_id == // target_phantom.forward_segment_id // && source_phantom.GetForwardWeightPlusOffset() > target_phantom.GetForwardWeightPlusOffset()) // requires // a force loop, if the heaps have been initialized with positive offsets. void Search(const DataFacadeT &facade, SearchEngineData::QueryHeap &forward_heap, SearchEngineData::QueryHeap &reverse_heap, std::int32_t &weight, std::vector &packed_leg, const bool force_loop_forward, const bool force_loop_reverse, const int duration_upper_bound = INVALID_EDGE_WEIGHT) const { NodeID middle = SPECIAL_NODEID; weight = duration_upper_bound; // get offset to account for offsets on phantom nodes on compressed edges const auto min_edge_offset = std::min(0, forward_heap.MinKey()); BOOST_ASSERT(min_edge_offset <= 0); // we only every insert negative offsets for nodes in the forward heap BOOST_ASSERT(reverse_heap.MinKey() >= 0); // run two-Target Dijkstra routing step. const constexpr bool STALLING_ENABLED = true; while (0 < (forward_heap.Size() + reverse_heap.Size())) { if (!forward_heap.Empty()) { RoutingStep(facade, forward_heap, reverse_heap, middle, weight, min_edge_offset, true, STALLING_ENABLED, force_loop_forward, force_loop_reverse); } if (!reverse_heap.Empty()) { RoutingStep(facade, reverse_heap, forward_heap, middle, weight, min_edge_offset, false, STALLING_ENABLED, force_loop_reverse, force_loop_forward); } } // No path found for both target nodes? if (duration_upper_bound <= weight || SPECIAL_NODEID == middle) { weight = INVALID_EDGE_WEIGHT; return; } // Was a paths over one of the forward/reverse nodes not found? BOOST_ASSERT_MSG((SPECIAL_NODEID != middle && INVALID_EDGE_WEIGHT != weight), "no path found"); // make sure to correctly unpack loops if (weight != forward_heap.GetKey(middle) + reverse_heap.GetKey(middle)) { // self loop makes up the full path packed_leg.push_back(middle); packed_leg.push_back(middle); } else { RetrievePackedPathFromHeap(forward_heap, reverse_heap, middle, packed_leg); } } // assumes that heaps are already setup correctly. // A forced loop might be necessary, if source and target are on the same segment. // If this is the case and the offsets of the respective direction are larger for the source // than the target // then a force loop is required (e.g. source_phantom.forward_segment_id == // target_phantom.forward_segment_id // && source_phantom.GetForwardWeightPlusOffset() > target_phantom.GetForwardWeightPlusOffset()) // requires // a force loop, if the heaps have been initialized with positive offsets. void SearchWithCore(const DataFacadeT &facade, SearchEngineData::QueryHeap &forward_heap, SearchEngineData::QueryHeap &reverse_heap, SearchEngineData::QueryHeap &forward_core_heap, SearchEngineData::QueryHeap &reverse_core_heap, int &weight, std::vector &packed_leg, const bool force_loop_forward, const bool force_loop_reverse, int duration_upper_bound = INVALID_EDGE_WEIGHT) const { NodeID middle = SPECIAL_NODEID; weight = duration_upper_bound; using CoreEntryPoint = std::tuple; std::vector forward_entry_points; std::vector reverse_entry_points; // get offset to account for offsets on phantom nodes on compressed edges const auto min_edge_offset = std::min(0, forward_heap.MinKey()); // we only every insert negative offsets for nodes in the forward heap BOOST_ASSERT(reverse_heap.MinKey() >= 0); const constexpr bool STALLING_ENABLED = true; // run two-Target Dijkstra routing step. while (0 < (forward_heap.Size() + reverse_heap.Size())) { if (!forward_heap.Empty()) { if (facade.IsCoreNode(forward_heap.Min())) { const NodeID node = forward_heap.DeleteMin(); const int key = forward_heap.GetKey(node); forward_entry_points.emplace_back(node, key, forward_heap.GetData(node).parent); } else { RoutingStep(facade, forward_heap, reverse_heap, middle, weight, min_edge_offset, true, STALLING_ENABLED, force_loop_forward, force_loop_reverse); } } if (!reverse_heap.Empty()) { if (facade.IsCoreNode(reverse_heap.Min())) { const NodeID node = reverse_heap.DeleteMin(); const int key = reverse_heap.GetKey(node); reverse_entry_points.emplace_back(node, key, reverse_heap.GetData(node).parent); } else { RoutingStep(facade, reverse_heap, forward_heap, middle, weight, min_edge_offset, false, STALLING_ENABLED, force_loop_reverse, force_loop_forward); } } } const auto insertInCoreHeap = [](const CoreEntryPoint &p, SearchEngineData::QueryHeap &core_heap) { NodeID id; EdgeWeight weight; NodeID parent; // TODO this should use std::apply when we get c++17 support std::tie(id, weight, parent) = p; core_heap.Insert(id, weight, parent); }; forward_core_heap.Clear(); for (const auto &p : forward_entry_points) { insertInCoreHeap(p, forward_core_heap); } reverse_core_heap.Clear(); for (const auto &p : reverse_entry_points) { insertInCoreHeap(p, reverse_core_heap); } // get offset to account for offsets on phantom nodes on compressed edges int min_core_edge_offset = 0; if (forward_core_heap.Size() > 0) { min_core_edge_offset = std::min(min_core_edge_offset, forward_core_heap.MinKey()); } if (reverse_core_heap.Size() > 0 && reverse_core_heap.MinKey() < 0) { min_core_edge_offset = std::min(min_core_edge_offset, reverse_core_heap.MinKey()); } BOOST_ASSERT(min_core_edge_offset <= 0); // run two-target Dijkstra routing step on core with termination criterion const constexpr bool STALLING_DISABLED = false; while (0 < forward_core_heap.Size() && 0 < reverse_core_heap.Size() && weight > (forward_core_heap.MinKey() + reverse_core_heap.MinKey())) { RoutingStep(facade, forward_core_heap, reverse_core_heap, middle, weight, min_core_edge_offset, true, STALLING_DISABLED, force_loop_forward, force_loop_reverse); RoutingStep(facade, reverse_core_heap, forward_core_heap, middle, weight, min_core_edge_offset, false, STALLING_DISABLED, force_loop_reverse, force_loop_forward); } // No path found for both target nodes? if (duration_upper_bound <= weight || SPECIAL_NODEID == middle) { weight = INVALID_EDGE_WEIGHT; return; } // Was a paths over one of the forward/reverse nodes not found? BOOST_ASSERT_MSG((SPECIAL_NODEID != middle && INVALID_EDGE_WEIGHT != weight), "no path found"); // we need to unpack sub path from core heaps if (facade.IsCoreNode(middle)) { if (weight != forward_core_heap.GetKey(middle) + reverse_core_heap.GetKey(middle)) { // self loop BOOST_ASSERT(forward_core_heap.GetData(middle).parent == middle && reverse_core_heap.GetData(middle).parent == middle); packed_leg.push_back(middle); packed_leg.push_back(middle); } else { std::vector packed_core_leg; RetrievePackedPathFromHeap( forward_core_heap, reverse_core_heap, middle, packed_core_leg); BOOST_ASSERT(packed_core_leg.size() > 0); RetrievePackedPathFromSingleHeap(forward_heap, packed_core_leg.front(), packed_leg); std::reverse(packed_leg.begin(), packed_leg.end()); packed_leg.insert(packed_leg.end(), packed_core_leg.begin(), packed_core_leg.end()); RetrievePackedPathFromSingleHeap(reverse_heap, packed_core_leg.back(), packed_leg); } } else { if (weight != forward_heap.GetKey(middle) + reverse_heap.GetKey(middle)) { // self loop BOOST_ASSERT(forward_heap.GetData(middle).parent == middle && reverse_heap.GetData(middle).parent == middle); packed_leg.push_back(middle); packed_leg.push_back(middle); } else { RetrievePackedPathFromHeap(forward_heap, reverse_heap, middle, packed_leg); } } } bool NeedsLoopForward(const PhantomNode &source_phantom, const PhantomNode &target_phantom) const { return source_phantom.forward_segment_id.enabled && target_phantom.forward_segment_id.enabled && source_phantom.forward_segment_id.id == target_phantom.forward_segment_id.id && source_phantom.GetForwardWeightPlusOffset() > target_phantom.GetForwardWeightPlusOffset(); } bool NeedsLoopBackwards(const PhantomNode &source_phantom, const PhantomNode &target_phantom) const { return source_phantom.reverse_segment_id.enabled && target_phantom.reverse_segment_id.enabled && source_phantom.reverse_segment_id.id == target_phantom.reverse_segment_id.id && source_phantom.GetReverseWeightPlusOffset() > target_phantom.GetReverseWeightPlusOffset(); } double GetPathDistance(const DataFacadeT &facade, const std::vector &packed_path, const PhantomNode &source_phantom, const PhantomNode &target_phantom) const { std::vector unpacked_path; PhantomNodes nodes; nodes.source_phantom = source_phantom; nodes.target_phantom = target_phantom; UnpackPath(facade, packed_path.begin(), packed_path.end(), nodes, unpacked_path); using util::coordinate_calculation::detail::DEGREE_TO_RAD; using util::coordinate_calculation::detail::EARTH_RADIUS; double distance = 0; double prev_lat = static_cast(toFloating(source_phantom.location.lat)) * DEGREE_TO_RAD; double prev_lon = static_cast(toFloating(source_phantom.location.lon)) * DEGREE_TO_RAD; double prev_cos = std::cos(prev_lat); for (const auto &p : unpacked_path) { const auto current_coordinate = facade.GetCoordinateOfNode(p.turn_via_node); const double current_lat = static_cast(toFloating(current_coordinate.lat)) * DEGREE_TO_RAD; const double current_lon = static_cast(toFloating(current_coordinate.lon)) * DEGREE_TO_RAD; const double current_cos = std::cos(current_lat); const double sin_dlon = std::sin((prev_lon - current_lon) / 2.0); const double sin_dlat = std::sin((prev_lat - current_lat) / 2.0); const double aharv = sin_dlat * sin_dlat + prev_cos * current_cos * sin_dlon * sin_dlon; const double charv = 2. * std::atan2(std::sqrt(aharv), std::sqrt(1.0 - aharv)); distance += EARTH_RADIUS * charv; prev_lat = current_lat; prev_lon = current_lon; prev_cos = current_cos; } const double current_lat = static_cast(toFloating(target_phantom.location.lat)) * DEGREE_TO_RAD; const double current_lon = static_cast(toFloating(target_phantom.location.lon)) * DEGREE_TO_RAD; const double current_cos = std::cos(current_lat); const double sin_dlon = std::sin((prev_lon - current_lon) / 2.0); const double sin_dlat = std::sin((prev_lat - current_lat) / 2.0); const double aharv = sin_dlat * sin_dlat + prev_cos * current_cos * sin_dlon * sin_dlon; const double charv = 2. * std::atan2(std::sqrt(aharv), std::sqrt(1.0 - aharv)); distance += EARTH_RADIUS * charv; return distance; } // Requires the heaps for be empty // If heaps should be adjusted to be initialized outside of this function, // the addition of force_loop parameters might be required double GetNetworkDistanceWithCore(const DataFacadeT &facade, SearchEngineData::QueryHeap &forward_heap, SearchEngineData::QueryHeap &reverse_heap, SearchEngineData::QueryHeap &forward_core_heap, SearchEngineData::QueryHeap &reverse_core_heap, const PhantomNode &source_phantom, const PhantomNode &target_phantom, int duration_upper_bound = INVALID_EDGE_WEIGHT) const { BOOST_ASSERT(forward_heap.Empty()); BOOST_ASSERT(reverse_heap.Empty()); if (source_phantom.forward_segment_id.enabled) { forward_heap.Insert(source_phantom.forward_segment_id.id, -source_phantom.GetForwardWeightPlusOffset(), source_phantom.forward_segment_id.id); } if (source_phantom.reverse_segment_id.enabled) { forward_heap.Insert(source_phantom.reverse_segment_id.id, -source_phantom.GetReverseWeightPlusOffset(), source_phantom.reverse_segment_id.id); } if (target_phantom.forward_segment_id.enabled) { reverse_heap.Insert(target_phantom.forward_segment_id.id, target_phantom.GetForwardWeightPlusOffset(), target_phantom.forward_segment_id.id); } if (target_phantom.reverse_segment_id.enabled) { reverse_heap.Insert(target_phantom.reverse_segment_id.id, target_phantom.GetReverseWeightPlusOffset(), target_phantom.reverse_segment_id.id); } const bool constexpr DO_NOT_FORCE_LOOPS = false; // prevents forcing of loops, since offsets are set correctly int duration = INVALID_EDGE_WEIGHT; std::vector packed_path; SearchWithCore(facade, forward_heap, reverse_heap, forward_core_heap, reverse_core_heap, duration, packed_path, DO_NOT_FORCE_LOOPS, DO_NOT_FORCE_LOOPS, duration_upper_bound); double distance = std::numeric_limits::max(); if (duration != INVALID_EDGE_WEIGHT) { return GetPathDistance(facade, packed_path, source_phantom, target_phantom); } return distance; } // Requires the heaps for be empty // If heaps should be adjusted to be initialized outside of this function, // the addition of force_loop parameters might be required double GetNetworkDistance(const DataFacadeT &facade, SearchEngineData::QueryHeap &forward_heap, SearchEngineData::QueryHeap &reverse_heap, const PhantomNode &source_phantom, const PhantomNode &target_phantom, int duration_upper_bound = INVALID_EDGE_WEIGHT) const { BOOST_ASSERT(forward_heap.Empty()); BOOST_ASSERT(reverse_heap.Empty()); if (source_phantom.forward_segment_id.enabled) { forward_heap.Insert(source_phantom.forward_segment_id.id, -source_phantom.GetForwardWeightPlusOffset(), source_phantom.forward_segment_id.id); } if (source_phantom.reverse_segment_id.enabled) { forward_heap.Insert(source_phantom.reverse_segment_id.id, -source_phantom.GetReverseWeightPlusOffset(), source_phantom.reverse_segment_id.id); } if (target_phantom.forward_segment_id.enabled) { reverse_heap.Insert(target_phantom.forward_segment_id.id, target_phantom.GetForwardWeightPlusOffset(), target_phantom.forward_segment_id.id); } if (target_phantom.reverse_segment_id.enabled) { reverse_heap.Insert(target_phantom.reverse_segment_id.id, target_phantom.GetReverseWeightPlusOffset(), target_phantom.reverse_segment_id.id); } const bool constexpr DO_NOT_FORCE_LOOPS = false; // prevents forcing of loops, since offsets are set correctly int duration = INVALID_EDGE_WEIGHT; std::vector packed_path; Search(facade, forward_heap, reverse_heap, duration, packed_path, DO_NOT_FORCE_LOOPS, DO_NOT_FORCE_LOOPS, duration_upper_bound); if (duration == INVALID_EDGE_WEIGHT) { return std::numeric_limits::max(); } return GetPathDistance(facade, packed_path, source_phantom, target_phantom); } }; } } } #endif // ROUTING_BASE_HPP