#include "extractor/guidance/constants.hpp" #include "extractor/guidance/intersection_scenario_three_way.hpp" #include "extractor/guidance/toolkit.hpp" #include "extractor/guidance/turn_handler.hpp" #include "util/guidance/toolkit.hpp" #include #include #include using EdgeData = osrm::util::NodeBasedDynamicGraph::EdgeData; using osrm::util::guidance::getTurnDirection; using osrm::util::guidance::angularDeviation; namespace osrm { namespace extractor { namespace guidance { TurnHandler::TurnHandler(const util::NodeBasedDynamicGraph &node_based_graph, const std::vector &node_info_list, const util::NameTable &name_table, const SuffixTable &street_name_suffix_table) : IntersectionHandler(node_based_graph, node_info_list, name_table, street_name_suffix_table) { } bool TurnHandler::canProcess(const NodeID, const EdgeID, const Intersection &) const { return true; } Intersection TurnHandler:: operator()(const NodeID, const EdgeID via_edge, Intersection intersection) const { if (intersection.size() == 1) return handleOneWayTurn(std::move(intersection)); if (intersection[0].entry_allowed) { intersection[0].turn.instruction = {findBasicTurnType(via_edge, intersection[0]), DirectionModifier::UTurn}; } if (intersection.size() == 2) return handleTwoWayTurn(via_edge, std::move(intersection)); if (intersection.size() == 3) return handleThreeWayTurn(via_edge, std::move(intersection)); return handleComplexTurn(via_edge, std::move(intersection)); } Intersection TurnHandler::handleOneWayTurn(Intersection intersection) const { BOOST_ASSERT(intersection[0].turn.angle < 0.001); return intersection; } Intersection TurnHandler::handleTwoWayTurn(const EdgeID via_edge, Intersection intersection) const { BOOST_ASSERT(intersection[0].turn.angle < 0.001); intersection[1].turn.instruction = getInstructionForObvious(intersection.size(), via_edge, false, intersection[1]); return intersection; } bool TurnHandler::isObviousOfTwo(const EdgeID via_edge, const ConnectedRoad &road, const ConnectedRoad &other) const { const auto &in_data = node_based_graph.GetEdgeData(via_edge); const auto &first_data = node_based_graph.GetEdgeData(road.turn.eid); const auto &second_data = node_based_graph.GetEdgeData(other.turn.eid); const auto &first_classification = first_data.road_classification; const auto &second_classification = second_data.road_classification; const bool is_ramp = first_classification.IsRampClass(); const bool is_obvious_by_road_class = (!is_ramp && (2 * first_classification.GetPriority() < second_classification.GetPriority()) && in_data.road_classification == first_classification) || (!first_classification.IsLowPriorityRoadClass() && second_classification.IsLowPriorityRoadClass()); if (is_obvious_by_road_class) return true; const bool other_is_obvious_by_road_class = (!second_classification.IsRampClass() && (2 * second_classification.GetPriority() < first_classification.GetPriority()) && in_data.road_classification == second_classification) || (!second_classification.IsLowPriorityRoadClass() && first_classification.IsLowPriorityRoadClass()); if (other_is_obvious_by_road_class) return false; const bool turn_is_perfectly_straight = angularDeviation(road.turn.angle, STRAIGHT_ANGLE) < std::numeric_limits::epsilon(); if (turn_is_perfectly_straight && in_data.name_id != EMPTY_NAMEID && in_data.name_id == node_based_graph.GetEdgeData(road.turn.eid).name_id) return true; const bool is_much_narrower_than_other = angularDeviation(other.turn.angle, STRAIGHT_ANGLE) / angularDeviation(road.turn.angle, STRAIGHT_ANGLE) > INCREASES_BY_FOURTY_PERCENT && angularDeviation(angularDeviation(other.turn.angle, STRAIGHT_ANGLE), angularDeviation(road.turn.angle, STRAIGHT_ANGLE)) > FUZZY_ANGLE_DIFFERENCE; return is_much_narrower_than_other; } Intersection TurnHandler::handleThreeWayTurn(const EdgeID via_edge, Intersection intersection) const { const auto &in_data = node_based_graph.GetEdgeData(via_edge); const auto &first_data = node_based_graph.GetEdgeData(intersection[1].turn.eid); const auto &second_data = node_based_graph.GetEdgeData(intersection[2].turn.eid); const auto obvious_index = findObviousTurn(via_edge, intersection); BOOST_ASSERT(intersection[0].turn.angle < 0.001); /* Two nearly straight turns -> FORK OOOOOOO / IIIIII \ OOOOOOO */ const auto fork_range = findFork(via_edge, intersection); if (fork_range.first == 1 && fork_range.second == 2) assignFork(via_edge, intersection[2], intersection[1]); /* T Intersection OOOOOOO T OOOOOOOO I I I */ else if (isEndOfRoad(intersection[0], intersection[1], intersection[2]) && obvious_index == 0) { if (intersection[1].entry_allowed) { if (TurnType::OnRamp != findBasicTurnType(via_edge, intersection[1])) intersection[1].turn.instruction = {TurnType::EndOfRoad, DirectionModifier::Right}; else intersection[1].turn.instruction = {TurnType::OnRamp, DirectionModifier::Right}; } if (intersection[2].entry_allowed) { if (TurnType::OnRamp != findBasicTurnType(via_edge, intersection[2])) intersection[2].turn.instruction = {TurnType::EndOfRoad, DirectionModifier::Left}; else intersection[2].turn.instruction = {TurnType::OnRamp, DirectionModifier::Left}; } } else { if (obvious_index == 1 && (in_data.name_id != second_data.name_id || first_data.name_id == second_data.name_id)) { intersection[1].turn.instruction = getInstructionForObvious( 3, via_edge, isThroughStreet(1, intersection), intersection[1]); } else { intersection[1].turn.instruction = {findBasicTurnType(via_edge, intersection[1]), getTurnDirection(intersection[1].turn.angle)}; } if (obvious_index == 2 && (in_data.name_id != first_data.name_id || first_data.name_id == second_data.name_id)) { intersection[2].turn.instruction = getInstructionForObvious( 3, via_edge, isThroughStreet(2, intersection), intersection[2]); } else { intersection[2].turn.instruction = {findBasicTurnType(via_edge, intersection[2]), getTurnDirection(intersection[2].turn.angle)}; } } return intersection; } Intersection TurnHandler::handleComplexTurn(const EdgeID via_edge, Intersection intersection) const { const std::size_t obvious_index = findObviousTurn(via_edge, intersection); const auto fork_range = findFork(via_edge, intersection); std::size_t straightmost_turn = 0; double straightmost_deviation = 180; for (std::size_t i = 0; i < intersection.size(); ++i) { const double deviation = angularDeviation(intersection[i].turn.angle, STRAIGHT_ANGLE); if (deviation < straightmost_deviation) { straightmost_deviation = deviation; straightmost_turn = i; } } // check whether there is a turn of the same name const auto &in_data = node_based_graph.GetEdgeData(via_edge); const bool has_same_name_turn = [&]() { for (std::size_t i = 1; i < intersection.size(); ++i) { if (node_based_graph.GetEdgeData(intersection[i].turn.eid).name_id == in_data.name_id) return true; } return false; }(); // check whether the obvious choice is actually a through street if (obvious_index != 0) { intersection[obvious_index].turn.instruction = getInstructionForObvious(intersection.size(), via_edge, isThroughStreet(obvious_index, intersection), intersection[obvious_index]); if (has_same_name_turn && node_based_graph.GetEdgeData(intersection[obvious_index].turn.eid).name_id != in_data.name_id && intersection[obvious_index].turn.instruction.type == TurnType::NewName) { // this is a special case that is necessary to correctly handle obvious turns on // continuing streets. Right now osrm does not know about right of way. If a street // turns to the left just like: // // a // a // aaaaaaa b b // // And another road exits here, we don't want to call it a new name, even though the // turn is obvious and does not require steering. To correctly handle these situations // in turn collapsing, we use the turn + straight combination here intersection[obvious_index].turn.instruction.type = TurnType::Turn; intersection[obvious_index].turn.instruction.direction_modifier = DirectionModifier::Straight; } // assign left/right turns intersection = assignLeftTurns(via_edge, std::move(intersection), obvious_index + 1); intersection = assignRightTurns(via_edge, std::move(intersection), obvious_index); } else if (fork_range.first != 0 && fork_range.second - fork_range.first <= 2) // found fork { if (fork_range.second - fork_range.first == 1) { auto &left = intersection[fork_range.second]; auto &right = intersection[fork_range.first]; const auto left_classification = node_based_graph.GetEdgeData(left.turn.eid).road_classification; const auto right_classification = node_based_graph.GetEdgeData(right.turn.eid).road_classification; if (canBeSeenAsFork(left_classification, right_classification)) assignFork(via_edge, left, right); else if (left_classification.GetPriority() > right_classification.GetPriority()) { right.turn.instruction = getInstructionForObvious(intersection.size(), via_edge, false, right); left.turn.instruction = {findBasicTurnType(via_edge, left), DirectionModifier::SlightLeft}; } else { left.turn.instruction = getInstructionForObvious(intersection.size(), via_edge, false, left); right.turn.instruction = {findBasicTurnType(via_edge, right), DirectionModifier::SlightRight}; } } else if (fork_range.second - fork_range.first == 2) { assignFork(via_edge, intersection[fork_range.second], intersection[fork_range.first + 1], intersection[fork_range.first]); } // assign left/right turns intersection = assignLeftTurns(via_edge, std::move(intersection), fork_range.second + 1); intersection = assignRightTurns(via_edge, std::move(intersection), fork_range.first); } else if (straightmost_deviation < FUZZY_ANGLE_DIFFERENCE && !intersection[straightmost_turn].entry_allowed) { // invalid straight turn intersection = assignLeftTurns(via_edge, std::move(intersection), straightmost_turn + 1); intersection = assignRightTurns(via_edge, std::move(intersection), straightmost_turn); } // no straight turn else if (intersection[straightmost_turn].turn.angle > 180) { // at most three turns on either side intersection = assignLeftTurns(via_edge, std::move(intersection), straightmost_turn); intersection = assignRightTurns(via_edge, std::move(intersection), straightmost_turn); } else if (intersection[straightmost_turn].turn.angle < 180) { intersection = assignLeftTurns(via_edge, std::move(intersection), straightmost_turn + 1); intersection = assignRightTurns(via_edge, std::move(intersection), straightmost_turn + 1); } else { assignTrivialTurns(via_edge, intersection, 1, intersection.size()); } return intersection; } // Assignment of left turns hands of to right turns. // To do so, we mirror every road segment and reverse the order. // After the mirror and reversal / we assign right turns and // mirror again and restore the original order. Intersection TurnHandler::assignLeftTurns(const EdgeID via_edge, Intersection intersection, const std::size_t starting_at) const { BOOST_ASSERT(starting_at <= intersection.size()); const auto switch_left_and_right = [](Intersection &intersection) { BOOST_ASSERT(!intersection.empty()); for (auto &road : intersection) road = mirror(std::move(road)); std::reverse(intersection.begin() + 1, intersection.end()); }; switch_left_and_right(intersection); // account for the u-turn in the beginning const auto count = intersection.size() - starting_at + 1; intersection = assignRightTurns(via_edge, std::move(intersection), count); switch_left_and_right(intersection); return intersection; } // can only assign three turns Intersection TurnHandler::assignRightTurns(const EdgeID via_edge, Intersection intersection, const std::size_t up_to) const { BOOST_ASSERT(up_to <= intersection.size()); const auto count_valid = [&intersection, up_to]() { std::size_t count = 0; for (std::size_t i = 1; i < up_to; ++i) if (intersection[i].entry_allowed) ++count; return count; }; if (up_to <= 1 || count_valid() == 0) return intersection; // handle single turn if (up_to == 2) { assignTrivialTurns(via_edge, intersection, 1, up_to); } // Handle Turns 1-3 else if (up_to == 3) { const auto first_direction = getTurnDirection(intersection[1].turn.angle); const auto second_direction = getTurnDirection(intersection[2].turn.angle); if (first_direction == second_direction) { // conflict handleDistinctConflict(via_edge, intersection[2], intersection[1]); } else { assignTrivialTurns(via_edge, intersection, 1, up_to); } } // Handle Turns 1-4 else if (up_to == 4) { const auto first_direction = getTurnDirection(intersection[1].turn.angle); const auto second_direction = getTurnDirection(intersection[2].turn.angle); const auto third_direction = getTurnDirection(intersection[3].turn.angle); if (first_direction != second_direction && second_direction != third_direction) { // due to the circular order, the turn directions are unique // first_direction != third_direction is implied BOOST_ASSERT(first_direction != third_direction); assignTrivialTurns(via_edge, intersection, 1, up_to); } else if (2 >= (intersection[1].entry_allowed + intersection[2].entry_allowed + intersection[3].entry_allowed)) { // at least a single invalid if (!intersection[3].entry_allowed) { handleDistinctConflict(via_edge, intersection[2], intersection[1]); } else if (!intersection[1].entry_allowed) { handleDistinctConflict(via_edge, intersection[3], intersection[2]); } else // handles one-valid as well as two valid (1,3) { handleDistinctConflict(via_edge, intersection[3], intersection[1]); } } // From here on out, intersection[1-3].entry_allowed has to be true (Otherwise we would have // triggered 2>= ...) // // Conflicting Turns, but at least farther than what we call a narrow turn else if (angularDeviation(intersection[1].turn.angle, intersection[2].turn.angle) >= NARROW_TURN_ANGLE && angularDeviation(intersection[2].turn.angle, intersection[3].turn.angle) >= NARROW_TURN_ANGLE) { BOOST_ASSERT(intersection[1].entry_allowed && intersection[2].entry_allowed && intersection[3].entry_allowed); intersection[1].turn.instruction = {findBasicTurnType(via_edge, intersection[1]), DirectionModifier::SharpRight}; intersection[2].turn.instruction = {findBasicTurnType(via_edge, intersection[2]), DirectionModifier::Right}; intersection[3].turn.instruction = {findBasicTurnType(via_edge, intersection[3]), DirectionModifier::SlightRight}; } else if (((first_direction == second_direction && second_direction == third_direction) || (first_direction == second_direction && angularDeviation(intersection[2].turn.angle, intersection[3].turn.angle) < GROUP_ANGLE) || (second_direction == third_direction && angularDeviation(intersection[1].turn.angle, intersection[2].turn.angle) < GROUP_ANGLE))) { BOOST_ASSERT(intersection[1].entry_allowed && intersection[2].entry_allowed && intersection[3].entry_allowed); // count backwards from the slightest turn assignTrivialTurns(via_edge, intersection, 1, up_to); } else if (((first_direction == second_direction && angularDeviation(intersection[2].turn.angle, intersection[3].turn.angle) >= GROUP_ANGLE) || (second_direction == third_direction && angularDeviation(intersection[1].turn.angle, intersection[2].turn.angle) >= GROUP_ANGLE))) { BOOST_ASSERT(intersection[1].entry_allowed && intersection[2].entry_allowed && intersection[3].entry_allowed); if (angularDeviation(intersection[2].turn.angle, intersection[3].turn.angle) >= GROUP_ANGLE) { handleDistinctConflict(via_edge, intersection[2], intersection[1]); intersection[3].turn.instruction = {findBasicTurnType(via_edge, intersection[3]), third_direction}; } else { intersection[1].turn.instruction = {findBasicTurnType(via_edge, intersection[1]), first_direction}; handleDistinctConflict(via_edge, intersection[3], intersection[2]); } } else { assignTrivialTurns(via_edge, intersection, 1, up_to); } } else { assignTrivialTurns(via_edge, intersection, 1, up_to); } return intersection; } std::pair TurnHandler::findFork(const EdgeID via_edge, const Intersection &intersection) const { std::size_t best = 0; double best_deviation = 180; // TODO handle road classes for (std::size_t i = 1; i < intersection.size(); ++i) { const double deviation = angularDeviation(intersection[i].turn.angle, STRAIGHT_ANGLE); if (intersection[i].entry_allowed && deviation < best_deviation) { best_deviation = deviation; best = i; } } if (best_deviation <= NARROW_TURN_ANGLE) { std::size_t left = best, right = best; while (left + 1 < intersection.size() && (angularDeviation(intersection[left + 1].turn.angle, STRAIGHT_ANGLE) <= NARROW_TURN_ANGLE || (angularDeviation(intersection[left].turn.angle, intersection[left + 1].turn.angle) <= NARROW_TURN_ANGLE && angularDeviation(intersection[left].turn.angle, STRAIGHT_ANGLE) <= GROUP_ANGLE))) ++left; while ( right > 1 && (angularDeviation(intersection[right - 1].turn.angle, STRAIGHT_ANGLE) <= NARROW_TURN_ANGLE || (angularDeviation(intersection[right].turn.angle, intersection[right - 1].turn.angle) < NARROW_TURN_ANGLE && angularDeviation(intersection[right - 1].turn.angle, STRAIGHT_ANGLE) <= GROUP_ANGLE))) --right; if (left == right) return std::make_pair(std::size_t{0}, std::size_t{0}); const bool valid_indices = 0 < right && right < left; const bool separated_at_left_side = angularDeviation(intersection[left].turn.angle, intersection[(left + 1) % intersection.size()].turn.angle) >= GROUP_ANGLE; const bool separated_at_right_side = right > 0 && angularDeviation(intersection[right].turn.angle, intersection[right - 1].turn.angle) >= GROUP_ANGLE; const bool not_more_than_three = (left - right) <= 2; const bool has_obvious = [&]() { if (left - right == 1) { return isObviousOfTwo(via_edge, intersection[left], intersection[right]) || isObviousOfTwo(via_edge, intersection[right], intersection[left]); } else if (left - right == 2) { return isObviousOfTwo(via_edge, intersection[right + 1], intersection[right]) || isObviousOfTwo(via_edge, intersection[right], intersection[right + 1]) || isObviousOfTwo(via_edge, intersection[left], intersection[right + 1]) || isObviousOfTwo(via_edge, intersection[right + 1], intersection[left]); } return false; }(); const bool has_compatible_classes = [&]() { const bool ramp_class = node_based_graph.GetEdgeData(intersection[right].turn.eid) .road_classification.IsLinkClass(); for (std::size_t index = right + 1; index <= left; ++index) if (ramp_class != node_based_graph.GetEdgeData(intersection[index].turn.eid) .road_classification.IsLinkClass()) return false; return true; }(); // TODO check whether 2*NARROW_TURN is too large if (valid_indices && separated_at_left_side && separated_at_right_side && not_more_than_three && !has_obvious && has_compatible_classes) return std::make_pair(right, left); } return std::make_pair(std::size_t{0}, std::size_t{0}); } void TurnHandler::handleDistinctConflict(const EdgeID via_edge, ConnectedRoad &left, ConnectedRoad &right) const { // single turn of both is valid (don't change the valid one) // or multiple identical angles -> bad OSM intersection if ((!left.entry_allowed || !right.entry_allowed) || (left.turn.angle == right.turn.angle)) { if (left.entry_allowed) left.turn.instruction = {findBasicTurnType(via_edge, left), getTurnDirection(left.turn.angle)}; if (right.entry_allowed) right.turn.instruction = {findBasicTurnType(via_edge, right), getTurnDirection(right.turn.angle)}; return; } if (getTurnDirection(left.turn.angle) == DirectionModifier::Straight || getTurnDirection(left.turn.angle) == DirectionModifier::SlightLeft || getTurnDirection(right.turn.angle) == DirectionModifier::SlightRight) { const auto left_classification = node_based_graph.GetEdgeData(left.turn.eid).road_classification; const auto right_classification = node_based_graph.GetEdgeData(right.turn.eid).road_classification; if (canBeSeenAsFork(left_classification, right_classification)) assignFork(via_edge, left, right); else if (left_classification.GetPriority() > right_classification.GetPriority()) { // FIXME this should possibly know about the actual roads? // here we don't know about the intersection size. To be on the save side, // we declare it // as complex (at least size 4) right.turn.instruction = getInstructionForObvious(4, via_edge, false, right); left.turn.instruction = {findBasicTurnType(via_edge, left), DirectionModifier::SlightLeft}; } else { // FIXME this should possibly know about the actual roads? // here we don't know about the intersection size. To be on the save side, // we declare it // as complex (at least size 4) left.turn.instruction = getInstructionForObvious(4, via_edge, false, left); right.turn.instruction = {findBasicTurnType(via_edge, right), DirectionModifier::SlightRight}; } } const auto left_type = findBasicTurnType(via_edge, left); const auto right_type = findBasicTurnType(via_edge, right); // Two Right Turns if (angularDeviation(left.turn.angle, 90) < MAXIMAL_ALLOWED_NO_TURN_DEVIATION) { // Keep left perfect, shift right left.turn.instruction = {left_type, DirectionModifier::Right}; right.turn.instruction = {right_type, DirectionModifier::SharpRight}; return; } if (angularDeviation(right.turn.angle, 90) < MAXIMAL_ALLOWED_NO_TURN_DEVIATION) { // Keep Right perfect, shift left left.turn.instruction = {left_type, DirectionModifier::SlightRight}; right.turn.instruction = {right_type, DirectionModifier::Right}; return; } // Two Right Turns if (angularDeviation(left.turn.angle, 270) < MAXIMAL_ALLOWED_NO_TURN_DEVIATION) { // Keep left perfect, shift right left.turn.instruction = {left_type, DirectionModifier::Left}; right.turn.instruction = {right_type, DirectionModifier::SlightLeft}; return; } if (angularDeviation(right.turn.angle, 270) < MAXIMAL_ALLOWED_NO_TURN_DEVIATION) { // Keep Right perfect, shift left left.turn.instruction = {left_type, DirectionModifier::SharpLeft}; right.turn.instruction = {right_type, DirectionModifier::Left}; return; } // Shift the lesser penalty if (getTurnDirection(left.turn.angle) == DirectionModifier::SharpLeft) { left.turn.instruction = {left_type, DirectionModifier::SharpLeft}; right.turn.instruction = {right_type, DirectionModifier::Left}; return; } if (getTurnDirection(right.turn.angle) == DirectionModifier::SharpRight) { left.turn.instruction = {left_type, DirectionModifier::Right}; right.turn.instruction = {right_type, DirectionModifier::SharpRight}; return; } if (getTurnDirection(left.turn.angle) == DirectionModifier::Right) { if (angularDeviation(left.turn.angle, 90) > angularDeviation(right.turn.angle, 90)) { left.turn.instruction = {left_type, DirectionModifier::SlightRight}; right.turn.instruction = {right_type, DirectionModifier::Right}; } else { left.turn.instruction = {left_type, DirectionModifier::Right}; right.turn.instruction = {right_type, DirectionModifier::SharpRight}; } } else { if (angularDeviation(left.turn.angle, 270) > angularDeviation(right.turn.angle, 270)) { left.turn.instruction = {left_type, DirectionModifier::SharpLeft}; right.turn.instruction = {right_type, DirectionModifier::Left}; } else { left.turn.instruction = {left_type, DirectionModifier::Left}; right.turn.instruction = {right_type, DirectionModifier::SlightLeft}; } } } } // namespace guidance } // namespace extractor } // namespace osrm