/* open source routing machine Copyright (C) Dennis Luxen, others 2010 This program is free software; you can redistribute it and/or modify it under the terms of the GNU AFFERO General Public License as published by the Free Software Foundation; either version 3 of the License, or any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU Affero General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA or see http://www.gnu.org/licenses/agpl.txt. */ #ifndef SHORTESTPATHROUTING_H_ #define SHORTESTPATHROUTING_H_ #include "BasicRoutingInterface.h" template class ShortestPathRouting : public BasicRoutingInterface{ typedef BasicRoutingInterface super; typedef typename QueryDataT::QueryHeap QueryHeap; public: ShortestPathRouting( QueryDataT & qd) : super(qd) {} ~ShortestPathRouting() {} void operator()(std::vector & phantomNodesVector, RawRouteData & rawRouteData) const { BOOST_FOREACH(const PhantomNodes & phantomNodePair, phantomNodesVector) { if(!phantomNodePair.AtLeastOnePhantomNodeIsUINTMAX()) { rawRouteData.lengthOfShortestPath = rawRouteData.lengthOfAlternativePath = INT_MAX; return; } } int distance1 = 0; int distance2 = 0; bool searchFrom1stStartNode = true; bool searchFrom2ndStartNode = true; NodeID middle1 = UINT_MAX; NodeID middle2 = UINT_MAX; std::vector packedPath1; std::vector packedPath2; super::_queryData.InitializeOrClearFirstThreadLocalStorage(); super::_queryData.InitializeOrClearSecondThreadLocalStorage(); QueryHeap & forwardHeap = *super::_queryData.forwardHeap; QueryHeap & backwardHeap = *super::_queryData.backwardHeap; QueryHeap & forwardHeap2 = *super::_queryData.forwardHeap2; QueryHeap & backwardHeap2 = *super::_queryData.backwardHeap2; //Get distance to next pair of target nodes. BOOST_FOREACH(const PhantomNodes & phantomNodePair, phantomNodesVector) { forwardHeap.Clear(); forwardHeap2.Clear(); backwardHeap.Clear(); backwardHeap2.Clear(); int _localUpperbound1 = INT_MAX; int _localUpperbound2 = INT_MAX; //insert new starting nodes into forward heap, adjusted by previous distances. if(searchFrom1stStartNode) { forwardHeap.Insert(phantomNodePair.startPhantom.edgeBasedNode, -phantomNodePair.startPhantom.weight1, phantomNodePair.startPhantom.edgeBasedNode); forwardHeap2.Insert(phantomNodePair.startPhantom.edgeBasedNode, -phantomNodePair.startPhantom.weight1, phantomNodePair.startPhantom.edgeBasedNode); } if(phantomNodePair.startPhantom.isBidirected() && searchFrom2ndStartNode) { forwardHeap.Insert(phantomNodePair.startPhantom.edgeBasedNode+1, -phantomNodePair.startPhantom.weight2, phantomNodePair.startPhantom.edgeBasedNode+1); forwardHeap2.Insert(phantomNodePair.startPhantom.edgeBasedNode+1, -phantomNodePair.startPhantom.weight2, phantomNodePair.startPhantom.edgeBasedNode+1); } //insert new backward nodes into backward heap, unadjusted. backwardHeap.Insert(phantomNodePair.targetPhantom.edgeBasedNode, phantomNodePair.targetPhantom.weight1, phantomNodePair.targetPhantom.edgeBasedNode); if(phantomNodePair.targetPhantom.isBidirected() ) { backwardHeap2.Insert(phantomNodePair.targetPhantom.edgeBasedNode+1, phantomNodePair.targetPhantom.weight2, phantomNodePair.targetPhantom.edgeBasedNode+1); } const int forward_offset = phantomNodePair.startPhantom.weight1 + (phantomNodePair.startPhantom.isBidirected() ? phantomNodePair.startPhantom.weight2 : 0); const int reverse_offset = phantomNodePair.targetPhantom.weight1 + (phantomNodePair.targetPhantom.isBidirected() ? phantomNodePair.targetPhantom.weight2 : 0); //run two-Target Dijkstra routing step. while(0 < (forwardHeap.Size() + backwardHeap.Size() )){ if(0 < forwardHeap.Size()){ super::RoutingStep(forwardHeap, backwardHeap, &middle1, &_localUpperbound1, forward_offset, true); } if(0 < backwardHeap.Size() ){ super::RoutingStep(backwardHeap, forwardHeap, &middle1, &_localUpperbound1, reverse_offset, false); } } if(0 < backwardHeap2.Size()) { while(0 < (forwardHeap2.Size() + backwardHeap2.Size() )){ if(0 < forwardHeap2.Size()){ super::RoutingStep(forwardHeap2, backwardHeap2, &middle2, &_localUpperbound2, forward_offset, true); } if(0 < backwardHeap2.Size()){ super::RoutingStep(backwardHeap2, forwardHeap2, &middle2, &_localUpperbound2, reverse_offset, false); } } } //No path found for both target nodes? if((INT_MAX == _localUpperbound1) && (INT_MAX == _localUpperbound2)) { rawRouteData.lengthOfShortestPath = rawRouteData.lengthOfAlternativePath = INT_MAX; return; } if(UINT_MAX == middle1) { searchFrom1stStartNode = false; } else { searchFrom1stStartNode = true; } if(UINT_MAX == middle2) { searchFrom2ndStartNode = false; } else { searchFrom2ndStartNode = true; } //Was at most one of the two paths not found? assert(!(INT_MAX == distance1 && INT_MAX == distance2)); //Unpack paths if they exist std::vector temporaryPackedPath1; std::vector temporaryPackedPath2; if(INT_MAX != _localUpperbound1) { super::RetrievePackedPathFromHeap(forwardHeap, backwardHeap, middle1, temporaryPackedPath1); } if(INT_MAX != _localUpperbound2) { super::RetrievePackedPathFromHeap(forwardHeap2, backwardHeap2, middle2, temporaryPackedPath2); } //if one of the paths was not found, replace it with the other one. if(0 == temporaryPackedPath1.size()) { temporaryPackedPath1.insert(temporaryPackedPath1.end(), temporaryPackedPath2.begin(), temporaryPackedPath2.end()); _localUpperbound1 = _localUpperbound2; } if(0 == temporaryPackedPath2.size()) { temporaryPackedPath2.insert(temporaryPackedPath2.end(), temporaryPackedPath1.begin(), temporaryPackedPath1.end()); _localUpperbound2 = _localUpperbound1; } assert(0 < temporaryPackedPath1.size() && 0 < temporaryPackedPath2.size()); //Plug paths together, s.t. end of packed path is begin of temporary packed path if(0 < packedPath1.size() && 0 < packedPath2.size() ) { if( *(temporaryPackedPath1.begin()) == *(temporaryPackedPath2.begin())) { //both new route segments start with the same node, thus one of the packedPath must go. assert( (packedPath1.size() == packedPath2.size() ) || (*(packedPath1.end()-1) != *(packedPath2.end()-1)) ); if( *(packedPath1.end()-1) == *(temporaryPackedPath1.begin())) { packedPath2.clear(); packedPath2.insert(packedPath2.end(), packedPath1.begin(), packedPath1.end()); distance2 = distance1; } else { packedPath1.clear(); packedPath1.insert(packedPath1.end(), packedPath2.begin(), packedPath2.end()); distance1 = distance2; } } else { //packed paths 1 and 2 may need to switch. if(*(packedPath1.end()-1) != *(temporaryPackedPath1.begin())) { packedPath1.swap(packedPath2); std::swap(distance1, distance2); } } } packedPath1.insert(packedPath1.end(), temporaryPackedPath1.begin(), temporaryPackedPath1.end()); packedPath2.insert(packedPath2.end(), temporaryPackedPath2.begin(), temporaryPackedPath2.end()); if( (packedPath1.back() == packedPath2.back()) && phantomNodePair.targetPhantom.isBidirected() ) { NodeID lastNodeID = packedPath2.back(); searchFrom1stStartNode &= !(lastNodeID == phantomNodePair.targetPhantom.edgeBasedNode+1); searchFrom2ndStartNode &= !(lastNodeID == phantomNodePair.targetPhantom.edgeBasedNode); } distance1 += _localUpperbound1; distance2 += _localUpperbound2; } if(distance1 > distance2){ std::swap(packedPath1, packedPath2); } remove_consecutive_duplicates_from_vector(packedPath1); super::UnpackPath(packedPath1, rawRouteData.computedShortestPath); rawRouteData.lengthOfShortestPath = std::min(distance1, distance2); return; } }; #endif /* SHORTESTPATHROUTING_H_ */