
WRAPPING LUA C IN C++
EFFICIENTLY, NICELY, AND WITH A TOUCH OF MAGIC

ThePhD, @thephantomderp
phdofthehouse@gmail.com | https://github.com/ThePhD/sol2

Boston C++ Meetup
November 8th, 2017

What we want out of this

Design - Ideal

Like the Language: Lua in C++

 What we need to mimic Lua in C++:
☑ Primitive – string
 Sized counted, const char*

☑ Primitive – number
 double covers everything (up until Lua 5.3)

☒ Primitive – function
 Created in Lua or bound from C++, not covered

☒ Primitive – reference
 All reference types in Lua (table, userdata, functions…)
 std::shared_ptr to cover this?

Like the Language: C++ in Lua

 What we need to mimic C++ in Lua:
☒ Primitive – classes
Member variable/function
 Static functions
 Inheritance?

☒ Primitive – enumerations

 Will not be talking about this today

Perfect Interface

 int value = lua[“values”][2];
 Access the VM, multi-depth query into state

 std::tie(a, b) = some_lua_function(“modulus”, 8, 3);
 Retrieve function and call it
 Be able to return multiple values

 lua[“my_function”] = [](std::string value, int append)
{ return value + “:” + std::to_string(append); };

Safety

 Lua is a dynamic language
 Nothing informs you of really typical mistakes
 Dynamite Development

 C++ rigorously checks types at compile-time
 Reconcile rigorous C++ methods to a fast and loose

runtime system

“… and on this rock I will build My church…”

Implementation - Core

Glossary I

 State – overall Lua state object
 Contains everything
 Not thread safe
 All operations affect entire state

 Globals
 global environment for everything
 Accessible like a table
 lua[“key”] means access the global table, for “key”

Glossary II

 Registry – designated place for C code storage
 Mandatory for performant code outside the stack

 Stack – collection of working Lua values
 Shared across entire state
 Manipulated by iteration (!)

Glossary III

 L – lua_State*
 Represents the state

 index – int
 Stack: position on Lua’s 1-based stack
 Registry: a reference number in Lua’s C registry

sol::stack

 The core of the API; usually never seen
 sol::stack::get<Type>(L, stack_index)
 sol::stack::push(L, obj);
 sol::stack::check<Type>(L, stack_index);

 Defines fixed interop points:
 struct sol::stack::getter<T, C = void>
 struct sol::stack::pusher<T, C = void>
 struct sol::stack::checker<T, sol::type, C = void>

sol::stack::getter

 Templated getter structure we can specialize
 T - unqualified type
 C - SFINAE-enabler

template <typename T, typename C = void>
struct getter {

T get (lua_State* L, int index) {
// ...

}
};

sol::stack::getter<int>

 sol::stack::get<int>(L, 1);
 int – the type we want to get
 Purpose of C shown below:

template <typename T>
struct getter<T, std::enable_if_t<

std::is_integral<T>::value
>> {

int get (lua_State* L, int index) {
return (T)lua_tointegerx(L, index, NULL);

}
};

sol::stack::pusher

 Templated pusher structure we can specialize
 T - unqualified type
 C - SFINAE-enabler

template <typename T, typename C = void>
struct pusher {

int push (lua_State* L, const T& object) {
// ...
return 1; // or # pushed onto stack

}
};

sol::stack::pusher

 sol::stack::push(L, std::string(“bark”));
 T - unqualified type
 C - SFINAE-enabler

template <>
struct pusher<std::string> {

int push (lua_State* L, const std::string& s) {
lua_pushlstring(L, s.c_str(), s.size());
return 1;

}
};

sol::stack::checker

 Templated checker structure we can specialize
 T - unqualified type
 C - SFINAE-enabler

template <typename T,
sol::type expect = sol::lua_type_of<T>::value,
typename C = void>

struct checker {
template <typename H>
bool checker (lua_State* L, int index, H&& handler) {

if (/* type check fails */) {
handler(…); return false;

}
return true;

}
};

Extend as needed

 Generate getters for standard library and built-in
types
 Function types; std::function<>; operator()(…) types
 Strings (c-string, std::string_view); integers; floats
 utf-8/16/32 conversions at boundaries

 Container types (std::vector/map/forward_list)

 Explicit and partial template specialization
 Users can specialize for their own types – extensible!!

Safety

 On every sol::stack::get operation
 Check if the desired specified C++ type matches

what’s stored using sol::stack::check, invoke default
panic handler

 Requires a safety #define to do this

 Everything runs through sol::stack::get/check/push
 Definitive point of interop: lets us (and you) control

everything

Ascending Higher

Higher level types

 Cannot work with sol::stack all the time
 Too low-level for most programmers
 Annoying to worry about push/pop counts and cleanup

 Need higher-level primitives
 Things that automatically handle:
 Registry lifetime
 Stack push, pop and clean up

reference – the cornerstone

 Base primitive for all extended types
 Only costs 1 int plus lua_State pointer
 Our “rule of zero” type

 Implements std::shared_ptr-like details
 Less overhead than std::shared_ptr with deleter
 Does not need thread safety, bolted to registry
 copy, move, deletion built into this type

reference - operations

 constructor (lua_State* L, int stack_index)
 create from stack reference, save in registry
 all our reference-based primitives need this constructor

 Basic observers
 sol::type get_type() const; int registry_index() const;

 Stack manipulators, but really only used by library
 int push() const; void pop ();

table, userdata, function, …

 Step 1: derive from sol::reference
 Step 2: add type assertion on construct

 Make optional for performance nuts or potential
unforseen future use cases

 Step 3: ????
 Step 4: Done!

class object: reference { … };
class table : reference { … };

class userdata : reference { … };
class function : reference { … };

Maximum “Rule of Zero”

 Step 3 may be more involved
 No other extra data members needed, however
 Everything is based on working with the stack, and that

references the type in the registry

 Task: writing stack-manipulation functions that
perform desired goal
 table access, function call, value conversion…

sol::object

 General-purpose “thing”: can be checked and
coverted
 bool is_type = obj.is<type>();
 type value = obj.as<type>();

 Considered the “any” type of the library
 just represents some single thing

sol::table

 Object that an be accessed with keys
 rhs = table.get<Type0, …, TypeN>(“key0”, …, “keyN”

);
 table.set (“key0”, value0, …, “keyN”, valueN);

 Just uses (multiple) sol::stack::get/sol::stack::push calls
 Multiple types / values allow std::tie multiple objects

from a tuple return

 sol::userdata is just a sol::table with a different type
check

sol::function

 A callable object
 func.call<result_type, …>(arg0, …, argN);

 Sequence of core stack operations
 sol::stack::push for each arg, accumulate # pushed
 Call function in VM, then sol::stack::get

 Variadic result specification
 Produces a tuple, otherwise produces single type

Interface is bad

 Explicit function calls everywhere
 Types everywhere

std::string s = func.call<std::string>(“dog”);
my_table.set(“some_key”, 24);
int value = my_table.get<int>(“some_key”);

We want something better!

 We have effective syntax in both languages for this

std::string s = func(“dog”);
my_table[“some_key”] = 24;
int value = my_table[“some_key”];

s = func(“dog”)
my_table[“some_key”] = 24
value = my_table[“some_key”];

the good stuff

Implementation - Magic

Proxies

 We need to convert from some expression to some
arbitrary type we want
 We need in-between types to do the conversion

 Need multiple in-between types, to fit scenarios
 operator[]: source and key-templated table proxy
 func(…): function_result proxy
 Other kinds for more advanced usages

The magic

 The proxy_base class, in its full glory…

proxy_base: the reference of proxies

 Implement the desired function for proxy_base
(get), and it handles conversions for us
 operator[]-generated proxies override operator= for

assignment purposes
 Allows seamless conversion

 operator[] on a proxy just generates another proxy
with the passed-in key

Proxies = 99% of the magic

 proxy_base forms base of:
 function_result/protected_function_result, stack_proxy,

table_proxy, etc…

 This works exactly as advertised:

std::string s = func(“dog”);
my_table[“some_key”] = 24;
int value = my_table[“some_key”];

std::string s2 = other_func(my_table[“key1”][“key2”]);

Documentation

Present since release of sol2

 Very explicit, lots of examples, lots of suggestions,
searchable:
 http://sol2.rtfd.io
 https://github.com/ThePhD/sol2/tree/develop/examples

 Covers simple and advanced use cases
 Attempts to group subject matter
 Tutorials through the basics
 Continuously adding examples from user feedback

http://sol2.rtfd.io/
https://github.com/ThePhD/sol2/tree/develop/examples

Thanks To

 Professor Gail E. Kaiser
 Coms E6156 – Advanced Software Engineering
 Iris Zhang – Vetted library, improved Mac OSX story

 Kevin Brightwell (Nava2)
 Took a great interest in sol2 before anyone else
 Vastly improved CI (twice in a row!)
 Submitted an upstream patch to Cmake for LuaJIT!

Thanks To

 Lounge<C++>

 EliasDaler (@EliasDaler), Eevee (@eevee)
 Blogposts (https://eev.ee, https://elias-daler.github.io)

 Jason Turner (@lefticus)
 Encouraged me to present at first and talk about Sol2
 Runs CppCast (https://cppcast.com)

Thank you!

 Questions and/or Comments?
 If you use sol2 or are going to use sol2, consider

leaving some feedback:
https://github.com/ThePhD/sol2/issues/189

	Wrapping Lua C in C++�Efficiently, Nicely, and with a Touch of Magic
	Design - Ideal
	Like the Language: Lua in C++
	Like the Language: C++ in Lua
	Perfect Interface
	Safety
	Implementation - Core
	Glossary I
	Glossary II
	Glossary III
	sol::stack
	sol::stack::getter
	sol::stack::getter<int>
	sol::stack::pusher
	sol::stack::pusher
	sol::stack::checker
	Extend as needed
	Safety
	Ascending Higher
	Higher level types
	reference – the cornerstone
	reference - operations
	table, userdata, function, …
	Maximum “Rule of Zero”
	sol::object
	sol::table
	sol::function
	Interface is bad
	We want something better!
	Implementation - Magic
	Proxies
	The magic
	proxy_base: the reference of proxies
	Proxies = 99% of the magic
	Documentation
	Present since release of sol2
	Thanks To
	Thanks To
	Thank you!

