#ifndef OSRM_GUIDANCE_TOOLKIT_HPP_ #define OSRM_GUIDANCE_TOOLKIT_HPP_ #include "util/attributes.hpp" #include "util/bearing.hpp" #include "util/coordinate.hpp" #include "util/coordinate_calculation.hpp" #include "util/guidance/toolkit.hpp" #include "util/guidance/turn_lanes.hpp" #include "util/typedefs.hpp" #include "extractor/compressed_edge_container.hpp" #include "extractor/query_node.hpp" #include "extractor/guidance/intersection.hpp" #include "extractor/guidance/turn_instruction.hpp" #include "engine/guidance/route_step.hpp" #include #include #include #include #include #include #include #include #include #include #include namespace osrm { namespace extractor { namespace guidance { using util::guidance::LaneTupleIdPair; using LaneDataIdMap = std::unordered_map>; using util::guidance::angularDeviation; using util::guidance::entersRoundabout; using util::guidance::leavesRoundabout; namespace detail { const constexpr double DESIRED_SEGMENT_LENGTH = 10.0; template util::Coordinate getCoordinateFromCompressedRange(util::Coordinate current_coordinate, const IteratorType compressed_geometry_begin, const IteratorType compressed_geometry_end, const util::Coordinate final_coordinate, const std::vector &query_nodes) { const auto extractCoordinateFromNode = [](const extractor::QueryNode &node) -> util::Coordinate { return {node.lon, node.lat}; }; double distance_to_current_coordinate = 0; double distance_to_next_coordinate = 0; // get the length that is missing from the current segment to reach DESIRED_SEGMENT_LENGTH const auto getFactor = [](const double first_distance, const double second_distance) { BOOST_ASSERT(first_distance < detail::DESIRED_SEGMENT_LENGTH); double segment_length = second_distance - first_distance; BOOST_ASSERT(segment_length > 0); BOOST_ASSERT(second_distance >= detail::DESIRED_SEGMENT_LENGTH); double missing_distance = detail::DESIRED_SEGMENT_LENGTH - first_distance; return std::max(0., std::min(missing_distance / segment_length, 1.0)); }; for (auto compressed_geometry_itr = compressed_geometry_begin; compressed_geometry_itr != compressed_geometry_end; ++compressed_geometry_itr) { const auto next_coordinate = extractCoordinateFromNode(query_nodes[compressed_geometry_itr->node_id]); distance_to_next_coordinate = distance_to_current_coordinate + util::coordinate_calculation::haversineDistance(current_coordinate, next_coordinate); // reached point where coordinates switch between if (distance_to_next_coordinate >= detail::DESIRED_SEGMENT_LENGTH) return util::coordinate_calculation::interpolateLinear( getFactor(distance_to_current_coordinate, distance_to_next_coordinate), current_coordinate, next_coordinate); // prepare for next iteration current_coordinate = next_coordinate; distance_to_current_coordinate = distance_to_next_coordinate; } distance_to_next_coordinate = distance_to_current_coordinate + util::coordinate_calculation::haversineDistance(current_coordinate, final_coordinate); // reached point where coordinates switch between if (distance_to_current_coordinate < detail::DESIRED_SEGMENT_LENGTH && distance_to_next_coordinate >= detail::DESIRED_SEGMENT_LENGTH) return util::coordinate_calculation::interpolateLinear( getFactor(distance_to_current_coordinate, distance_to_next_coordinate), current_coordinate, final_coordinate); else return final_coordinate; } } // namespace detail // Finds a (potentially interpolated) coordinate that is DESIRED_SEGMENT_LENGTH away // from the start of an edge inline util::Coordinate getRepresentativeCoordinate(const NodeID from_node, const NodeID to_node, const EdgeID via_edge_id, const bool traverse_in_reverse, const extractor::CompressedEdgeContainer &compressed_geometries, const std::vector &query_nodes) { const auto extractCoordinateFromNode = [](const extractor::QueryNode &node) -> util::Coordinate { return {node.lon, node.lat}; }; // Uncompressed roads are simple, return the coordinate at the end if (!compressed_geometries.HasZippedEntryForForwardID(via_edge_id) && !compressed_geometries.HasZippedEntryForReverseID(via_edge_id)) { return extractCoordinateFromNode(traverse_in_reverse ? query_nodes[from_node] : query_nodes[to_node]); } else { const auto &geometry = compressed_geometries.GetBucketReference(via_edge_id); const auto base_node_id = (traverse_in_reverse) ? to_node : from_node; const auto base_coordinate = extractCoordinateFromNode(query_nodes[base_node_id]); const auto final_node = (traverse_in_reverse) ? from_node : to_node; const auto final_coordinate = extractCoordinateFromNode(query_nodes[final_node]); if (traverse_in_reverse) return detail::getCoordinateFromCompressedRange( base_coordinate, geometry.rbegin(), geometry.rend(), final_coordinate, query_nodes); else return detail::getCoordinateFromCompressedRange( base_coordinate, geometry.begin(), geometry.end(), final_coordinate, query_nodes); } } // To simplify handling of Left/Right hand turns, we can mirror turns and write an intersection // handler only for one side. The mirror function turns a left-hand turn in a equivalent right-hand // turn and vice versa. OSRM_ATTR_WARN_UNUSED inline ConnectedRoad mirror(ConnectedRoad road) { const constexpr DirectionModifier::Enum mirrored_modifiers[] = {DirectionModifier::UTurn, DirectionModifier::SharpLeft, DirectionModifier::Left, DirectionModifier::SlightLeft, DirectionModifier::Straight, DirectionModifier::SlightRight, DirectionModifier::Right, DirectionModifier::SharpRight}; if (angularDeviation(road.turn.angle, 0) > std::numeric_limits::epsilon()) { road.turn.angle = 360 - road.turn.angle; road.turn.instruction.direction_modifier = mirrored_modifiers[road.turn.instruction.direction_modifier]; } return road; } inline bool hasRoundaboutType(const TurnInstruction instruction) { using namespace extractor::guidance::TurnType; const constexpr TurnType::Enum valid_types[] = {TurnType::EnterRoundabout, TurnType::EnterAndExitRoundabout, TurnType::EnterRotary, TurnType::EnterAndExitRotary, TurnType::EnterRoundaboutIntersection, TurnType::EnterAndExitRoundaboutIntersection, TurnType::EnterRoundaboutAtExit, TurnType::ExitRoundabout, TurnType::EnterRotaryAtExit, TurnType::ExitRotary, TurnType::EnterRoundaboutIntersectionAtExit, TurnType::ExitRoundaboutIntersection, TurnType::StayOnRoundabout}; const auto *first = valid_types; const auto *last = first + sizeof(valid_types) / sizeof(valid_types[0]); return std::find(first, last, instruction.type) != last; } // Public service vehicle lanes and similar can introduce additional lanes into the lane string that // are not specifically marked for left/right turns. This function can be used from the profile to // trim the lane string appropriately // // left|throught| // in combination with lanes:psv:forward=1 // will be corrected to left|throught, since the final lane is not drivable. // This is in contrast to a situation with lanes:psv:forward=0 (or not set) where left|through| // represents left|through|through OSRM_ATTR_WARN_UNUSED inline std::string trimLaneString(std::string lane_string, std::int32_t count_left, std::int32_t count_right) { if (count_left) { bool sane = count_left < static_cast(lane_string.size()); for (std::int32_t i = 0; i < count_left; ++i) // this is adjusted for our fake pipe. The moment cucumber can handle multiple escaped // pipes, the '&' part can be removed if (lane_string[i] != '|') { sane = false; break; } if (sane) { lane_string.erase(lane_string.begin(), lane_string.begin() + count_left); } } if (count_right) { bool sane = count_right < static_cast(lane_string.size()); for (auto itr = lane_string.rbegin(); itr != lane_string.rend() && itr != lane_string.rbegin() + count_right; ++itr) { if (*itr != '|') { sane = false; break; } } if (sane) lane_string.resize(lane_string.size() - count_right); } return lane_string; } // https://github.com/Project-OSRM/osrm-backend/issues/2638 // It can happen that some lanes are not drivable by car. Here we handle this tagging scheme // (vehicle:lanes) to filter out not-allowed roads // lanes=3 // turn:lanes=left|through|through|right // vehicle:lanes=yes|yes|no|yes // bicycle:lanes=yes|no|designated|yes OSRM_ATTR_WARN_UNUSED inline std::string applyAccessTokens(std::string lane_string, const std::string &access_tokens) { typedef boost::tokenizer> tokenizer; boost::char_separator sep("|", "", boost::keep_empty_tokens); tokenizer tokens(lane_string, sep); tokenizer access(access_tokens, sep); // strings don't match, don't do anything if (std::distance(std::begin(tokens), std::end(tokens)) != std::distance(std::begin(access), std::end(access))) return lane_string; std::string result_string = ""; const static std::string yes = "yes"; for (auto token_itr = std::begin(tokens), access_itr = std::begin(access); token_itr != std::end(tokens); ++token_itr, ++access_itr) { if (*access_itr == yes) { // we have to add this in front, because the next token could be invalid. Doing this on // non-empty strings makes sure that the token string will be valid in the end if (!result_string.empty()) result_string += '|'; result_string += *token_itr; } } return result_string; } LaneID inline numLanesToTheRight(const engine::guidance::RouteStep &step) { return step.intersections.front().lanes.first_lane_from_the_right; } LaneID inline numLanesToTheLeft(const engine::guidance::RouteStep &step) { LaneID const total = step.intersections.front().lane_description.size(); return total - (step.intersections.front().lanes.lanes_in_turn + step.intersections.front().lanes.first_lane_from_the_right); } auto inline lanesToTheLeft(const engine::guidance::RouteStep &step) { const auto &description = step.intersections.front().lane_description; LaneID num_lanes_left = numLanesToTheLeft(step); return boost::make_iterator_range(description.begin(), description.begin() + num_lanes_left); } auto inline lanesToTheRight(const engine::guidance::RouteStep &step) { const auto &description = step.intersections.front().lane_description; LaneID num_lanes_right = numLanesToTheRight(step); return boost::make_iterator_range(description.end() - num_lanes_right, description.end()); } } // namespace guidance } // namespace extractor } // namespace osrm #endif // OSRM_GUIDANCE_TOOLKIT_HPP_