BITING THE CMAKE BULLET

LEARNING A META-BUILD SYSTEM
FOR FUN AND NOT PROFIT

ThePhD
Boston C++ Meetup @thephantomderp
February 6%, 2018 https://github.com/ThePhD

https://github.com/ThePhD

WHAT ARE WE DOING THIS FOR?

RUNNING LIBRARY TESTS

* Header-only library still needed to build tests
* \Verify we are correct on all platforms

* Use appveyor / travis-ci

» Tests are not very complicated

But TONS of target platforms

TARGETS

 Compilers

e GCC7.x,6x5x%x,49 || LLVM 5., 4,x, 3.9., 3.8.x, 3.7.x, 3.6.x | | VC++ v141, v140, v140 _xp

* Platforms
* Windows — Visual Studio (MSBuild) vs. Not-Visual Studio (MinGW, etc.)
* Linux (compiler-based), Mac OSX — Xcode 9.x, 8., 7.x, 6.x
* Debug + Release, x86 + x64

* LuaVersion—-5.1,5.2,5.3,JIT-2.0, JIT-2.1

FIRST “SOLUTION”

e Python “bootstrap.py”
* Ad-hoc home rolled meta build system creating ninja.build file to run tests

* Worked well enough to get off the ground without committing to a build system (back in 2014/2015)

 CMake recommended by contributor in early 2016

* Rejected at the time due to stepping beyond just creating test harness

PROBLEMS

e Unable to support all the platforms
e Okay for GCC/LLVM and Linux
e VC++ and MSBuild?

* Tacked-on spaghetti code for managing dependencies
* Depended on fetched Lua using package manager

* Expected everything to be laid out before hand

DIVING INTO CMAKE

CAN CMAKE SOLVE OUR PROBLEMS?

THE FOUNDATION: PROJECT WITH TARGETS

* Project
* Single top-level declaration, required CMake version, project version, languages utilized (!!)
* One project, mutiple targets

* Can set configuration for project version and how dependencies are managed (complex)

* Targets (Executables and Libraries)
* Transparently link outputs to inputs with a single command (no copy)

* Imported/Interface Libraries to handle prebuilt-objects/header-only libraries (!!)

» Luahi-£.1.0
¥ I scratch
[idea

DIRECTORY-BASED

> crnake-build-debug

> make-build-llvm- debug
catch_mock.hpp
CMakelists.bt

* Subdirectories included with add_subdirectory main.cpp
main.hpp

e Each directory represents a project * main.lua
main_aux.cpp

* One CMakelists.txt in directory
» All variables directory-scoped, can pass up with set(NAME VALUE PARENT SCOPE)

e Targets added with
 add_executable(name ...) — supply list of sources to compile executable
* add_library(name TYPE ...) — supply list of sources to compile library of TYPE (SHARED/STATIC)

e add_custom_target(name ...) — execute custom command / sequence of commands

QUERY/MANIPULATE TARGETS

target_sources(target sources...)
* Append sources to target for compilation

 Good for conditional inclusion of additional source files

target_include_directories(target PRIVATE | PUBLIC|INTERFACE dirs...)

* Add include directories with the propagation modifier

target_link_libraries(target [PRIVATE |PUBLIC|INTERFACE library targeti1]...)

* Link libraries (and their outputs) into the target during build with the propagation modifier

10

QUERY/MANIPULATE TARGETS Il

* get target properties, set_target properties
Bread and butter of setting languages, standards, and similar
Pull out a single property into a variable, or set multiple

Different properties based on target type are valid (INCLUDE_DIRECTORIES)

11

CODE REUSE

include(file)

e Like C++ include — copy-paste into current scope

add_subdirectory(directory [binary_output_directory])

» Takes CMakelists.txt from specified directory (local or absolute)

Macros, Functions
* Define and call in your own code

* Note that Macros DO NOT introduce a new scope: functions do (useful later)

12

HANDLING PREINSTALLED LIBRARIES

* find_package(NAME [[VERSION] [EXACT]] [REQUIRED])
* Very big and present since earliest days of CMake
e Using them is fairly simple
- find_package(Threads) — finds the threading library (pthreads or similar)

* find_package(Lua 5.3 EXACT REQUIRED) — finds Lua, fails build if 5.3 exactly cannot be found on system

* Implementation a little more complex

13

EXTERNALPROJECT

Standard CMake Module — include(ExternalProject)
* Allows git/mercurial/svn/cvs/raw-link clone/checkout/download (with HTTPS or MDS/SHA1 hash verification)

* Performs steps in the order of download, configure, build, install, and test

Used easily for download of Lua/LualIT
* Lua: listed sources and compiled directly (written in ANSI C)

* LuallT: too complex to just “pull, get sources, build”
* Linux - Run “make”, use CMake copy operation to move outputs to expected location

* Windows — Run “msvcbuild.bat”, use CMake copy operation to move outputs to expected location

14

EXTERNALPROJECT

ExternalProject Add{(LUA VANILLA
BUILD IN_SOURCE TRUE
BUILD ALWAYS TRUE
TLS VERIFY TRUE
PREFIX ${LUA_BUILD TOPLEVEL}
SOURCE_DIR ${LUA_BUILD TOPLEVEL}
DOWNLOAD DIR ${LUA BUILD TOPLEVEL}
TMP_DIR "${LUA BUILD TOPLEVEL}-tmp"
STAMP_DIR "${LUA_BUILD TOPLEVEL}-stamp"
INSTALL DIR "${LUA_BUILD INSTALL DIR}"
URL https://www.lua.org/ftp/lua-${LUA VANILLA VERSION}.tar.gz
URL MD5 ${LUA_VANILLA MD5}
URL HASH SHA1=$%${LUA VANILLA_ SHA1}
CONFIGURE_COMMAND "™
BUILD COMMAND ™™
INSTALL COMMAND ™™
TEST COMMAND "™

BUILD BYPRODUCTS "${LUA_VANILLA LIB SOURCES}" "${LUA VANILLA LUA SOURCES}" "${LUA VANILLA LUAC_ SOURCES}")
15

EXTERNALPROJECT _ADDSTEP

* Allows for additional steps to be tacked onto an external project

ExternalProject_Add_Step(LUA_VANILLA
prebuild

DEFPENDEES download

DEPENDERS build

BYPRODUCTS "${LUA_VANILLA DESTINATION LUA HPP}"

COMMENT "Moving \"${LUA_VANILLA SOURCE_LUA_HPP}\" to \"${LUA_VANILLA_DESTINATION_ LUA HPP}\"..."

COMMAND "${CMAKE_COMMAND}" -E copy "${LUA_VANILLA_SOURCE_LUA_HPP}" "${LUA_VANILLA_DESTINATION_LUA_HPP}'])
()

16

AD-HOC HACKS

e (Can set settings by appending to command line

) : (MSVC)
or prebuilt-variables add_definitions(/DUNICODE /D_UNICODE
* /D_SILENCE_CXX17_UNCAUGHT EXCEPTION_DEPRECATION_WARNING
* CMAKE_ /D_SILENCE_CXX17_CODECVT HEADER_DEPRECATION_WARNING

. : . : /D_CRT_SECURE_NO_WARNINGS /D_CRT_SECURE_NO_DEPRECATE)
* Inspect in-built variables such as if (MSVC)

add_compile_options(/W4 /EHsc)
(CMAKE_CXX_COMPILER_ID MATCHES “"Clang")
add_compile_options(/MP)

e Older functions which affect entire project . ()
e add ‘definitions (PLATFORM MATCHES "x86")
= 1ist(APPEND CMAKE_C_FLAGS "-m32")

1ist(APPEND CMAKE_EXE_LINKER_FLAGS "-m32")
1ist(APPEND CMAKE_SHARED_LINKER_FLAGS "-m32")
0

add_compile_options(-Wno-unknown-warning
-Wno-unknown-warning-option
-Wall -Wextra -Wpedantic 17
-pedantic -pedantic-errors)

O

(PLATFORM MATCHES "x86" OR CMAKE_SIZEOF_VOID_P EQUAL 4)
set (CMAKE_ARCHIVE_OUTPUT_DIRECTORY "${CMAKE BINARY_ DIR}/x86/1lib")

AD HOC HAC KS ” set (CMAKE_LIBRARY_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/x86/1ib™)

set (CMAKE_RUNTIME_OUTPUT DIRECTORY "${CMAKE_BINARY DIR}/x86/bin")

()
set (CMAKE_ARCHIVE_OUTPUT_DIRECTORY "${CMAKE_BINARY_ DIR}/x64/1lib")

set (CMAKE_LIBRARY OUTPUT_DIRECTORY "${CMAKE BINARY DIR}/x64/lib")
set (CMAKE_RUNTIME_OUTPUT DIRECTORY "${CMAKE_BINARY_ DIR}/x64/bin")

O

* Targets sometimes do not output to same location
* Causes problems when running executable that relies on multiple DLLs

* Simple fix: specify project output directory at top of project

18

FUTURE LEARNING - GENERATOR EXPRESSIONS

* Apparently very powerful
* Meant to make things simpler and more in-line

* Only works in certain contexts, enforcing confusion

MOSTLY) WORKS!

LATEST BUILD

WOOps

20

READ THE DOCS!

https://cmake.org/cmake/help/latest/

~ CMake » [EIEIEE] LA Documentation »

Interactive Dialogs

This Page « cmake

Quick search

P LEICRY latost rel, LB RA Documentation »

© Copyright 2000-2017 Kitware, Inc. and Contributors. Created using Sphin 1.5.2.

next | index

next | index

21

https://cmake.org/cmake/help/latest/

FUTURE PROJECTS

Sol2 interop and require_dIl examples

e https://github.com/ThePhD/sol2/tree/develop/examples/require dll example

e https://github.com/ThePhD/sol2/tree/develop/examples/interop

Lua Benchmarking Library

e https://github.com/ThePhD/lua-bench

22

https://github.com/ThePhD/sol2/tree/develop/examples/require_dll_example
https://github.com/ThePhD/sol2/tree/develop/examples/interop
https://github.com/ThePhD/lua-bench

THANK YOU!

QUESTIONS? AND, IF TIME PERMITS, AN EXAMPLE?

23

