#ifndef CONTIGUOUS_INTERNALMEM_DATAFACADE_HPP #define CONTIGUOUS_INTERNALMEM_DATAFACADE_HPP #include "engine/datafacade/algorithm_datafacade.hpp" #include "engine/datafacade/contiguous_block_allocator.hpp" #include "engine/datafacade/datafacade_base.hpp" #include "engine/algorithm.hpp" #include "engine/approach.hpp" #include "engine/geospatial_query.hpp" #include "customizer/edge_based_graph.hpp" #include "extractor/datasources.hpp" #include "extractor/edge_based_node.hpp" #include "extractor/intersection_bearings_container.hpp" #include "extractor/node_data_container.hpp" #include "extractor/packed_osm_ids.hpp" #include "extractor/profile_properties.hpp" #include "extractor/segment_data_container.hpp" #include "extractor/turn_lane_types.hpp" #include "guidance/turn_bearing.hpp" #include "guidance/turn_data_container.hpp" #include "guidance/turn_instruction.hpp" #include "contractor/query_graph.hpp" #include "partitioner/cell_storage.hpp" #include "partitioner/multi_level_partition.hpp" #include "storage/shared_datatype.hpp" #include "storage/shared_memory_ownership.hpp" #include "util/exception.hpp" #include "util/exception_utils.hpp" #include "util/filtered_graph.hpp" #include "util/guidance/bearing_class.hpp" #include "util/guidance/entry_class.hpp" #include "util/guidance/turn_lanes.hpp" #include "util/log.hpp" #include "util/name_table.hpp" #include "util/packed_vector.hpp" #include "util/range_table.hpp" #include "util/rectangle.hpp" #include "util/static_graph.hpp" #include "util/static_rtree.hpp" #include "util/typedefs.hpp" #include #include #include #include #include #include #include #include #include namespace osrm { namespace engine { namespace datafacade { template class ContiguousInternalMemoryAlgorithmDataFacade; template <> class ContiguousInternalMemoryAlgorithmDataFacade : public datafacade::AlgorithmDataFacade { private: using QueryGraph = util::FilteredGraphView; using GraphNode = QueryGraph::NodeArrayEntry; using GraphEdge = QueryGraph::EdgeArrayEntry; QueryGraph m_query_graph; // allocator that keeps the allocation data std::shared_ptr allocator; void InitializeGraphPointer(storage::DataLayout &data_layout, char *memory_block, const std::size_t exclude_index) { auto graph_nodes_ptr = data_layout.GetBlockPtr( memory_block, storage::DataLayout::CH_GRAPH_NODE_LIST); auto graph_edges_ptr = data_layout.GetBlockPtr( memory_block, storage::DataLayout::CH_GRAPH_EDGE_LIST); auto filter_block_id = static_cast( storage::DataLayout::CH_EDGE_FILTER_0 + exclude_index); auto edge_filter_ptr = data_layout.GetBlockPtr(memory_block, filter_block_id); util::vector_view node_list( graph_nodes_ptr, data_layout.num_entries[storage::DataLayout::CH_GRAPH_NODE_LIST]); util::vector_view edge_list( graph_edges_ptr, data_layout.num_entries[storage::DataLayout::CH_GRAPH_EDGE_LIST]); util::vector_view edge_filter(edge_filter_ptr, data_layout.num_entries[filter_block_id]); m_query_graph = QueryGraph({node_list, edge_list}, edge_filter); } public: ContiguousInternalMemoryAlgorithmDataFacade( std::shared_ptr allocator_, std::size_t exclude_index) : allocator(std::move(allocator_)) { InitializeInternalPointers(allocator->GetLayout(), allocator->GetMemory(), exclude_index); } void InitializeInternalPointers(storage::DataLayout &data_layout, char *memory_block, const std::size_t exclude_index) { InitializeGraphPointer(data_layout, memory_block, exclude_index); } // search graph access unsigned GetNumberOfNodes() const override final { return m_query_graph.GetNumberOfNodes(); } unsigned GetNumberOfEdges() const override final { return m_query_graph.GetNumberOfEdges(); } unsigned GetOutDegree(const NodeID n) const override final { return m_query_graph.GetOutDegree(n); } NodeID GetTarget(const EdgeID e) const override final { return m_query_graph.GetTarget(e); } const EdgeData &GetEdgeData(const EdgeID e) const override final { return m_query_graph.GetEdgeData(e); } EdgeRange GetAdjacentEdgeRange(const NodeID node) const override final { return m_query_graph.GetAdjacentEdgeRange(node); } // searches for a specific edge EdgeID FindEdge(const NodeID from, const NodeID to) const override final { return m_query_graph.FindEdge(from, to); } EdgeID FindEdgeInEitherDirection(const NodeID from, const NodeID to) const override final { return m_query_graph.FindEdgeInEitherDirection(from, to); } EdgeID FindEdgeIndicateIfReverse(const NodeID from, const NodeID to, bool &result) const override final { return m_query_graph.FindEdgeIndicateIfReverse(from, to, result); } EdgeID FindSmallestEdge(const NodeID from, const NodeID to, std::function filter) const override final { return m_query_graph.FindSmallestEdge(from, to, filter); } }; /** * This base class implements the Datafacade interface for accessing * data that's stored in a single large block of memory (RAM). * * In this case "internal memory" refers to RAM - as opposed to "external memory", * which usually refers to disk. */ class ContiguousInternalMemoryDataFacadeBase : public BaseDataFacade { private: using super = BaseDataFacade; using IndexBlock = util::RangeTable<16, storage::Ownership::View>::BlockT; using RTreeLeaf = super::RTreeLeaf; using SharedRTree = util::StaticRTree; using SharedGeospatialQuery = GeospatialQuery; using RTreeNode = SharedRTree::TreeNode; extractor::ClassData exclude_mask; std::string m_timestamp; extractor::ProfileProperties *m_profile_properties; extractor::Datasources *m_datasources; unsigned m_check_sum; util::vector_view m_coordinate_list; extractor::PackedOSMIDsView m_osmnodeid_list; util::vector_view m_lane_description_offsets; util::vector_view m_lane_description_masks; util::vector_view m_turn_weight_penalties; util::vector_view m_turn_duration_penalties; extractor::SegmentDataView segment_data; extractor::EdgeBasedNodeDataView edge_based_node_data; guidance::TurnDataView turn_data; util::vector_view m_datasource_name_data; util::vector_view m_datasource_name_offsets; util::vector_view m_datasource_name_lengths; util::vector_view m_lane_tupel_id_pairs; std::unique_ptr m_static_rtree; std::unique_ptr m_geospatial_query; boost::filesystem::path file_index_path; extractor::IntersectionBearingsView intersection_bearings_view; util::NameTable m_name_table; // the look-up table for entry classes. An entry class lists the possibility of entry for all // available turns. Such a class id is stored with every edge. util::vector_view m_entry_class_table; // allocator that keeps the allocation data std::shared_ptr allocator; void InitializeProfilePropertiesPointer(storage::DataLayout &data_layout, char *memory_block, const std::size_t exclude_index) { m_profile_properties = data_layout.GetBlockPtr( memory_block, storage::DataLayout::PROPERTIES); exclude_mask = m_profile_properties->excludable_classes[exclude_index]; } void InitializeTimestampPointer(storage::DataLayout &data_layout, char *memory_block) { auto timestamp_ptr = data_layout.GetBlockPtr(memory_block, storage::DataLayout::TIMESTAMP); m_timestamp.resize(data_layout.GetBlockSize(storage::DataLayout::TIMESTAMP)); std::copy(timestamp_ptr, timestamp_ptr + data_layout.GetBlockSize(storage::DataLayout::TIMESTAMP), m_timestamp.begin()); } void InitializeChecksumPointer(storage::DataLayout &data_layout, char *memory_block) { m_check_sum = *data_layout.GetBlockPtr(memory_block, storage::DataLayout::HSGR_CHECKSUM); util::Log() << "set checksum: " << m_check_sum; } void InitializeRTreePointers(storage::DataLayout &data_layout, char *memory_block) { BOOST_ASSERT_MSG(!m_coordinate_list.empty(), "coordinates must be loaded before r-tree"); const auto file_index_ptr = data_layout.GetBlockPtr(memory_block, storage::DataLayout::FILE_INDEX_PATH); file_index_path = boost::filesystem::path(file_index_ptr); if (!boost::filesystem::exists(file_index_path)) { util::Log(logDEBUG) << "Leaf file name " << file_index_path.string(); throw util::exception("Could not load " + file_index_path.string() + "Is any data loaded into shared memory?" + SOURCE_REF); } auto tree_nodes_ptr = data_layout.GetBlockPtr(memory_block, storage::DataLayout::R_SEARCH_TREE); auto tree_level_sizes_ptr = data_layout.GetBlockPtr( memory_block, storage::DataLayout::R_SEARCH_TREE_LEVELS); m_static_rtree.reset( new SharedRTree(tree_nodes_ptr, data_layout.num_entries[storage::DataLayout::R_SEARCH_TREE], tree_level_sizes_ptr, data_layout.num_entries[storage::DataLayout::R_SEARCH_TREE_LEVELS], file_index_path, m_coordinate_list)); m_geospatial_query.reset( new SharedGeospatialQuery(*m_static_rtree, m_coordinate_list, *this)); } void InitializeNodeInformationPointers(storage::DataLayout &layout, char *memory_ptr) { const auto coordinate_list_ptr = layout.GetBlockPtr(memory_ptr, storage::DataLayout::COORDINATE_LIST); m_coordinate_list.reset(coordinate_list_ptr, layout.num_entries[storage::DataLayout::COORDINATE_LIST]); const auto osmnodeid_ptr = layout.GetBlockPtr( memory_ptr, storage::DataLayout::OSM_NODE_ID_LIST); m_osmnodeid_list = extractor::PackedOSMIDsView( util::vector_view( osmnodeid_ptr, layout.num_entries[storage::DataLayout::OSM_NODE_ID_LIST]), // We (ab)use the number of coordinates here because we know we have the same amount of // ids layout.num_entries[storage::DataLayout::COORDINATE_LIST]); } void InitializeEdgeBasedNodeDataInformationPointers(storage::DataLayout &layout, char *memory_ptr) { const auto edge_based_node_list_ptr = layout.GetBlockPtr( memory_ptr, storage::DataLayout::EDGE_BASED_NODE_DATA_LIST); util::vector_view edge_based_node_data_list( edge_based_node_list_ptr, layout.num_entries[storage::DataLayout::EDGE_BASED_NODE_DATA_LIST]); const auto annotation_data_list_ptr = layout.GetBlockPtr( memory_ptr, storage::DataLayout::ANNOTATION_DATA_LIST); util::vector_view annotation_data( annotation_data_list_ptr, layout.num_entries[storage::DataLayout::ANNOTATION_DATA_LIST]); edge_based_node_data = extractor::EdgeBasedNodeDataView( std::move(edge_based_node_data_list), std::move(annotation_data)); } void InitializeEdgeInformationPointers(storage::DataLayout &layout, char *memory_ptr) { const auto lane_data_id_ptr = layout.GetBlockPtr(memory_ptr, storage::DataLayout::LANE_DATA_ID); util::vector_view lane_data_ids( lane_data_id_ptr, layout.num_entries[storage::DataLayout::LANE_DATA_ID]); const auto turn_instruction_list_ptr = layout.GetBlockPtr( memory_ptr, storage::DataLayout::TURN_INSTRUCTION); util::vector_view turn_instructions( turn_instruction_list_ptr, layout.num_entries[storage::DataLayout::TURN_INSTRUCTION]); const auto entry_class_id_list_ptr = layout.GetBlockPtr(memory_ptr, storage::DataLayout::ENTRY_CLASSID); util::vector_view entry_class_ids( entry_class_id_list_ptr, layout.num_entries[storage::DataLayout::ENTRY_CLASSID]); const auto pre_turn_bearing_ptr = layout.GetBlockPtr( memory_ptr, storage::DataLayout::PRE_TURN_BEARING); util::vector_view pre_turn_bearings( pre_turn_bearing_ptr, layout.num_entries[storage::DataLayout::PRE_TURN_BEARING]); const auto post_turn_bearing_ptr = layout.GetBlockPtr( memory_ptr, storage::DataLayout::POST_TURN_BEARING); util::vector_view post_turn_bearings( post_turn_bearing_ptr, layout.num_entries[storage::DataLayout::POST_TURN_BEARING]); turn_data = guidance::TurnDataView(std::move(turn_instructions), std::move(lane_data_ids), std::move(entry_class_ids), std::move(pre_turn_bearings), std::move(post_turn_bearings)); } void InitializeNamePointers(storage::DataLayout &data_layout, char *memory_block) { auto name_data_ptr = data_layout.GetBlockPtr(memory_block, storage::DataLayout::NAME_CHAR_DATA); const auto name_data_size = data_layout.num_entries[storage::DataLayout::NAME_CHAR_DATA]; m_name_table.reset(name_data_ptr, name_data_ptr + name_data_size); } void InitializeTurnLaneDescriptionsPointers(storage::DataLayout &data_layout, char *memory_block) { auto offsets_ptr = data_layout.GetBlockPtr( memory_block, storage::DataLayout::LANE_DESCRIPTION_OFFSETS); util::vector_view offsets( offsets_ptr, data_layout.num_entries[storage::DataLayout::LANE_DESCRIPTION_OFFSETS]); m_lane_description_offsets = std::move(offsets); auto masks_ptr = data_layout.GetBlockPtr( memory_block, storage::DataLayout::LANE_DESCRIPTION_MASKS); util::vector_view masks( masks_ptr, data_layout.num_entries[storage::DataLayout::LANE_DESCRIPTION_MASKS]); m_lane_description_masks = std::move(masks); const auto lane_tupel_id_pair_ptr = data_layout.GetBlockPtr( memory_block, storage::DataLayout::TURN_LANE_DATA); util::vector_view lane_tupel_id_pair( lane_tupel_id_pair_ptr, data_layout.num_entries[storage::DataLayout::TURN_LANE_DATA]); m_lane_tupel_id_pairs = std::move(lane_tupel_id_pair); } void InitializeTurnPenalties(storage::DataLayout &data_layout, char *memory_block) { auto turn_weight_penalties_ptr = data_layout.GetBlockPtr( memory_block, storage::DataLayout::TURN_WEIGHT_PENALTIES); m_turn_weight_penalties = util::vector_view( turn_weight_penalties_ptr, data_layout.num_entries[storage::DataLayout::TURN_WEIGHT_PENALTIES]); auto turn_duration_penalties_ptr = data_layout.GetBlockPtr( memory_block, storage::DataLayout::TURN_DURATION_PENALTIES); m_turn_duration_penalties = util::vector_view( turn_duration_penalties_ptr, data_layout.num_entries[storage::DataLayout::TURN_DURATION_PENALTIES]); } void InitializeGeometryPointers(storage::DataLayout &data_layout, char *memory_block) { auto geometries_index_ptr = data_layout.GetBlockPtr(memory_block, storage::DataLayout::GEOMETRIES_INDEX); util::vector_view geometry_begin_indices( geometries_index_ptr, data_layout.num_entries[storage::DataLayout::GEOMETRIES_INDEX]); auto num_entries = data_layout.num_entries[storage::DataLayout::GEOMETRIES_NODE_LIST]; auto geometries_node_list_ptr = data_layout.GetBlockPtr( memory_block, storage::DataLayout::GEOMETRIES_NODE_LIST); util::vector_view geometry_node_list(geometries_node_list_ptr, num_entries); auto geometries_fwd_weight_list_ptr = data_layout.GetBlockPtr( memory_block, storage::DataLayout::GEOMETRIES_FWD_WEIGHT_LIST); extractor::SegmentDataView::SegmentWeightVector geometry_fwd_weight_list( util::vector_view( geometries_fwd_weight_list_ptr, data_layout.num_entries[storage::DataLayout::GEOMETRIES_FWD_WEIGHT_LIST]), num_entries); auto geometries_rev_weight_list_ptr = data_layout.GetBlockPtr( memory_block, storage::DataLayout::GEOMETRIES_REV_WEIGHT_LIST); extractor::SegmentDataView::SegmentWeightVector geometry_rev_weight_list( util::vector_view( geometries_rev_weight_list_ptr, data_layout.num_entries[storage::DataLayout::GEOMETRIES_REV_WEIGHT_LIST]), num_entries); auto geometries_fwd_duration_list_ptr = data_layout.GetBlockPtr( memory_block, storage::DataLayout::GEOMETRIES_FWD_DURATION_LIST); extractor::SegmentDataView::SegmentDurationVector geometry_fwd_duration_list( util::vector_view( geometries_fwd_duration_list_ptr, data_layout.num_entries[storage::DataLayout::GEOMETRIES_FWD_DURATION_LIST]), num_entries); auto geometries_rev_duration_list_ptr = data_layout.GetBlockPtr( memory_block, storage::DataLayout::GEOMETRIES_REV_DURATION_LIST); extractor::SegmentDataView::SegmentDurationVector geometry_rev_duration_list( util::vector_view( geometries_rev_duration_list_ptr, data_layout.num_entries[storage::DataLayout::GEOMETRIES_REV_DURATION_LIST]), num_entries); auto geometries_fwd_datasources_list_ptr = data_layout.GetBlockPtr( memory_block, storage::DataLayout::GEOMETRIES_FWD_DATASOURCES_LIST); util::vector_view geometry_fwd_datasources_list( geometries_fwd_datasources_list_ptr, data_layout.num_entries[storage::DataLayout::GEOMETRIES_FWD_DATASOURCES_LIST]); auto geometries_rev_datasources_list_ptr = data_layout.GetBlockPtr( memory_block, storage::DataLayout::GEOMETRIES_REV_DATASOURCES_LIST); util::vector_view geometry_rev_datasources_list( geometries_rev_datasources_list_ptr, data_layout.num_entries[storage::DataLayout::GEOMETRIES_REV_DATASOURCES_LIST]); segment_data = extractor::SegmentDataView{std::move(geometry_begin_indices), std::move(geometry_node_list), std::move(geometry_fwd_weight_list), std::move(geometry_rev_weight_list), std::move(geometry_fwd_duration_list), std::move(geometry_rev_duration_list), std::move(geometry_fwd_datasources_list), std::move(geometry_rev_datasources_list)}; m_datasources = data_layout.GetBlockPtr( memory_block, storage::DataLayout::DATASOURCES_NAMES); } void InitializeIntersectionClassPointers(storage::DataLayout &data_layout, char *memory_block) { auto bearing_class_id_ptr = data_layout.GetBlockPtr( memory_block, storage::DataLayout::BEARING_CLASSID); util::vector_view bearing_class_id( bearing_class_id_ptr, data_layout.num_entries[storage::DataLayout::BEARING_CLASSID]); auto bearing_values_ptr = data_layout.GetBlockPtr( memory_block, storage::DataLayout::BEARING_VALUES); util::vector_view bearing_values( bearing_values_ptr, data_layout.num_entries[storage::DataLayout::BEARING_VALUES]); auto offsets_ptr = data_layout.GetBlockPtr(memory_block, storage::DataLayout::BEARING_OFFSETS); auto blocks_ptr = data_layout.GetBlockPtr(memory_block, storage::DataLayout::BEARING_BLOCKS); util::vector_view bearing_offsets( offsets_ptr, data_layout.num_entries[storage::DataLayout::BEARING_OFFSETS]); util::vector_view bearing_blocks( blocks_ptr, data_layout.num_entries[storage::DataLayout::BEARING_BLOCKS]); util::RangeTable<16, storage::Ownership::View> bearing_range_table( bearing_offsets, bearing_blocks, static_cast(bearing_values.size())); intersection_bearings_view = extractor::IntersectionBearingsView{ std::move(bearing_values), std::move(bearing_class_id), std::move(bearing_range_table)}; auto entry_class_ptr = data_layout.GetBlockPtr( memory_block, storage::DataLayout::ENTRY_CLASS); util::vector_view entry_class_table( entry_class_ptr, data_layout.num_entries[storage::DataLayout::ENTRY_CLASS]); m_entry_class_table = std::move(entry_class_table); } void InitializeInternalPointers(storage::DataLayout &data_layout, char *memory_block, const std::size_t exclude_index) { InitializeChecksumPointer(data_layout, memory_block); InitializeNodeInformationPointers(data_layout, memory_block); InitializeEdgeBasedNodeDataInformationPointers(data_layout, memory_block); InitializeEdgeInformationPointers(data_layout, memory_block); InitializeTurnPenalties(data_layout, memory_block); InitializeGeometryPointers(data_layout, memory_block); InitializeTimestampPointer(data_layout, memory_block); InitializeNamePointers(data_layout, memory_block); InitializeTurnLaneDescriptionsPointers(data_layout, memory_block); InitializeProfilePropertiesPointer(data_layout, memory_block, exclude_index); InitializeRTreePointers(data_layout, memory_block); InitializeIntersectionClassPointers(data_layout, memory_block); } public: // allows switching between process_memory/shared_memory datafacade, based on the type of // allocator ContiguousInternalMemoryDataFacadeBase(std::shared_ptr allocator_, const std::size_t exclude_index) : allocator(std::move(allocator_)) { InitializeInternalPointers(allocator->GetLayout(), allocator->GetMemory(), exclude_index); } // node and edge information access util::Coordinate GetCoordinateOfNode(const NodeID id) const override final { return m_coordinate_list[id]; } OSMNodeID GetOSMNodeIDOfNode(const NodeID id) const override final { return m_osmnodeid_list[id]; } std::vector GetUncompressedForwardGeometry(const EdgeID id) const override final { auto range = segment_data.GetForwardGeometry(id); return std::vector{range.begin(), range.end()}; } virtual std::vector GetUncompressedReverseGeometry(const EdgeID id) const override final { auto range = segment_data.GetReverseGeometry(id); return std::vector{range.begin(), range.end()}; } virtual std::vector GetUncompressedForwardDurations(const EdgeID id) const override final { auto range = segment_data.GetForwardDurations(id); return std::vector{range.begin(), range.end()}; } virtual std::vector GetUncompressedReverseDurations(const EdgeID id) const override final { auto range = segment_data.GetReverseDurations(id); return std::vector{range.begin(), range.end()}; } virtual std::vector GetUncompressedForwardWeights(const EdgeID id) const override final { auto range = segment_data.GetForwardWeights(id); return std::vector{range.begin(), range.end()}; } virtual std::vector GetUncompressedReverseWeights(const EdgeID id) const override final { auto range = segment_data.GetReverseWeights(id); return std::vector{range.begin(), range.end()}; } // Returns the data source ids that were used to supply the edge // weights. virtual std::vector GetUncompressedForwardDatasources(const EdgeID id) const override final { auto range = segment_data.GetForwardDatasources(id); return std::vector{range.begin(), range.end()}; } // Returns the data source ids that were used to supply the edge // weights. virtual std::vector GetUncompressedReverseDatasources(const EdgeID id) const override final { auto range = segment_data.GetReverseDatasources(id); return std::vector{range.begin(), range.end()}; } virtual TurnPenalty GetWeightPenaltyForEdgeID(const unsigned id) const override final { BOOST_ASSERT(m_turn_weight_penalties.size() > id); return m_turn_weight_penalties[id]; } virtual TurnPenalty GetDurationPenaltyForEdgeID(const unsigned id) const override final { BOOST_ASSERT(m_turn_duration_penalties.size() > id); return m_turn_duration_penalties[id]; } osrm::guidance::TurnInstruction GetTurnInstructionForEdgeID(const EdgeID id) const override final { return turn_data.GetTurnInstruction(id); } std::vector GetEdgesInBox(const util::Coordinate south_west, const util::Coordinate north_east) const override final { BOOST_ASSERT(m_geospatial_query.get()); const util::RectangleInt2D bbox{ south_west.lon, north_east.lon, south_west.lat, north_east.lat}; return m_geospatial_query->Search(bbox); } std::vector NearestPhantomNodesInRange(const util::Coordinate input_coordinate, const float max_distance, const Approach approach) const override final { BOOST_ASSERT(m_geospatial_query.get()); return m_geospatial_query->NearestPhantomNodesInRange( input_coordinate, max_distance, approach); } std::vector NearestPhantomNodesInRange(const util::Coordinate input_coordinate, const float max_distance, const int bearing, const int bearing_range, const Approach approach) const override final { BOOST_ASSERT(m_geospatial_query.get()); return m_geospatial_query->NearestPhantomNodesInRange( input_coordinate, max_distance, bearing, bearing_range, approach); } std::vector NearestPhantomNodes(const util::Coordinate input_coordinate, const unsigned max_results, const Approach approach) const override final { BOOST_ASSERT(m_geospatial_query.get()); return m_geospatial_query->NearestPhantomNodes(input_coordinate, max_results, approach); } std::vector NearestPhantomNodes(const util::Coordinate input_coordinate, const unsigned max_results, const double max_distance, const Approach approach) const override final { BOOST_ASSERT(m_geospatial_query.get()); return m_geospatial_query->NearestPhantomNodes( input_coordinate, max_results, max_distance, approach); } std::vector NearestPhantomNodes(const util::Coordinate input_coordinate, const unsigned max_results, const int bearing, const int bearing_range, const Approach approach) const override final { BOOST_ASSERT(m_geospatial_query.get()); return m_geospatial_query->NearestPhantomNodes( input_coordinate, max_results, bearing, bearing_range, approach); } std::vector NearestPhantomNodes(const util::Coordinate input_coordinate, const unsigned max_results, const double max_distance, const int bearing, const int bearing_range, const Approach approach) const override final { BOOST_ASSERT(m_geospatial_query.get()); return m_geospatial_query->NearestPhantomNodes( input_coordinate, max_results, max_distance, bearing, bearing_range, approach); } std::pair NearestPhantomNodeWithAlternativeFromBigComponent(const util::Coordinate input_coordinate, const Approach approach) const override final { BOOST_ASSERT(m_geospatial_query.get()); return m_geospatial_query->NearestPhantomNodeWithAlternativeFromBigComponent( input_coordinate, approach); } std::pair NearestPhantomNodeWithAlternativeFromBigComponent(const util::Coordinate input_coordinate, const double max_distance, const Approach approach) const override final { BOOST_ASSERT(m_geospatial_query.get()); return m_geospatial_query->NearestPhantomNodeWithAlternativeFromBigComponent( input_coordinate, max_distance, approach); } std::pair NearestPhantomNodeWithAlternativeFromBigComponent(const util::Coordinate input_coordinate, const double max_distance, const int bearing, const int bearing_range, const Approach approach) const override final { BOOST_ASSERT(m_geospatial_query.get()); return m_geospatial_query->NearestPhantomNodeWithAlternativeFromBigComponent( input_coordinate, max_distance, bearing, bearing_range, approach); } std::pair NearestPhantomNodeWithAlternativeFromBigComponent(const util::Coordinate input_coordinate, const int bearing, const int bearing_range, const Approach approach) const override final { BOOST_ASSERT(m_geospatial_query.get()); return m_geospatial_query->NearestPhantomNodeWithAlternativeFromBigComponent( input_coordinate, bearing, bearing_range, approach); } unsigned GetCheckSum() const override final { return m_check_sum; } GeometryID GetGeometryIndex(const NodeID id) const override final { return edge_based_node_data.GetGeometryID(id); } ComponentID GetComponentID(const NodeID id) const override final { return edge_based_node_data.GetComponentID(id); } extractor::TravelMode GetTravelMode(const NodeID id) const override final { return edge_based_node_data.GetTravelMode(id); } extractor::ClassData GetClassData(const NodeID id) const override final { return edge_based_node_data.GetClassData(id); } bool ExcludeNode(const NodeID id) const override final { return (edge_based_node_data.GetClassData(id) & exclude_mask) > 0; } std::vector GetClasses(const extractor::ClassData class_data) const override final { auto indexes = extractor::getClassIndexes(class_data); std::vector classes(indexes.size()); std::transform(indexes.begin(), indexes.end(), classes.begin(), [this](const auto index) { return m_profile_properties->GetClassName(index); }); return classes; } NameID GetNameIndex(const NodeID id) const override final { return edge_based_node_data.GetNameID(id); } StringView GetNameForID(const NameID id) const override final { return m_name_table.GetNameForID(id); } StringView GetRefForID(const NameID id) const override final { return m_name_table.GetRefForID(id); } StringView GetPronunciationForID(const NameID id) const override final { return m_name_table.GetPronunciationForID(id); } StringView GetDestinationsForID(const NameID id) const override final { return m_name_table.GetDestinationsForID(id); } StringView GetExitsForID(const NameID id) const override final { return m_name_table.GetExitsForID(id); } StringView GetDatasourceName(const DatasourceID id) const override final { return m_datasources->GetSourceName(id); } std::string GetTimestamp() const override final { return m_timestamp; } bool GetContinueStraightDefault() const override final { return m_profile_properties->continue_straight_at_waypoint; } double GetMapMatchingMaxSpeed() const override final { return m_profile_properties->max_speed_for_map_matching; } const char *GetWeightName() const override final { return m_profile_properties->weight_name; } unsigned GetWeightPrecision() const override final { return m_profile_properties->weight_precision; } double GetWeightMultiplier() const override final { return m_profile_properties->GetWeightMultiplier(); } util::guidance::BearingClass GetBearingClass(const NodeID node) const override final { return intersection_bearings_view.GetBearingClass(node); } guidance::TurnBearing PreTurnBearing(const EdgeID eid) const override final { return turn_data.GetPreTurnBearing(eid); } guidance::TurnBearing PostTurnBearing(const EdgeID eid) const override final { return turn_data.GetPostTurnBearing(eid); } util::guidance::EntryClass GetEntryClass(const EdgeID turn_id) const override final { auto entry_class_id = turn_data.GetEntryClassID(turn_id); return m_entry_class_table.at(entry_class_id); } bool HasLaneData(const EdgeID id) const override final { return turn_data.HasLaneData(id); } util::guidance::LaneTupleIdPair GetLaneData(const EdgeID id) const override final { BOOST_ASSERT(HasLaneData(id)); return m_lane_tupel_id_pairs.at(turn_data.GetLaneDataID(id)); } extractor::TurnLaneDescription GetTurnDescription(const LaneDescriptionID lane_description_id) const override final { if (lane_description_id == INVALID_LANE_DESCRIPTIONID) return {}; else return extractor::TurnLaneDescription( m_lane_description_masks.begin() + m_lane_description_offsets[lane_description_id], m_lane_description_masks.begin() + m_lane_description_offsets[lane_description_id + 1]); } bool IsLeftHandDriving(const NodeID id) const override final { // TODO: can be moved to a data block indexed by GeometryID return edge_based_node_data.IsLeftHandDriving(id); } bool IsSegregated(const NodeID id) const override final { return edge_based_node_data.IsSegregated(id); } }; template class ContiguousInternalMemoryDataFacade; template <> class ContiguousInternalMemoryDataFacade : public ContiguousInternalMemoryDataFacadeBase, public ContiguousInternalMemoryAlgorithmDataFacade { public: ContiguousInternalMemoryDataFacade(std::shared_ptr allocator, const std::size_t exclude_index) : ContiguousInternalMemoryDataFacadeBase(allocator, exclude_index), ContiguousInternalMemoryAlgorithmDataFacade(allocator, exclude_index) { } }; template <> class ContiguousInternalMemoryAlgorithmDataFacade : public AlgorithmDataFacade { // MLD data partitioner::MultiLevelPartitionView mld_partition; partitioner::CellStorageView mld_cell_storage; customizer::CellMetricView mld_cell_metric; using QueryGraph = customizer::MultiLevelEdgeBasedGraphView; using GraphNode = QueryGraph::NodeArrayEntry; using GraphEdge = QueryGraph::EdgeArrayEntry; QueryGraph query_graph; void InitializeInternalPointers(storage::DataLayout &data_layout, char *memory_block, const std::size_t exclude_index) { InitializeMLDDataPointers(data_layout, memory_block, exclude_index); InitializeGraphPointer(data_layout, memory_block); } void InitializeMLDDataPointers(storage::DataLayout &data_layout, char *memory_block, const std::size_t exclude_index) { if (data_layout.GetBlockSize(storage::DataLayout::MLD_PARTITION) > 0) { BOOST_ASSERT(data_layout.GetBlockSize(storage::DataLayout::MLD_LEVEL_DATA) > 0); BOOST_ASSERT(data_layout.GetBlockSize(storage::DataLayout::MLD_CELL_TO_CHILDREN) > 0); auto level_data = data_layout.GetBlockPtr( memory_block, storage::DataLayout::MLD_LEVEL_DATA); auto mld_partition_ptr = data_layout.GetBlockPtr( memory_block, storage::DataLayout::MLD_PARTITION); auto partition_entries_count = data_layout.GetBlockEntries(storage::DataLayout::MLD_PARTITION); util::vector_view partition(mld_partition_ptr, partition_entries_count); auto mld_chilren_ptr = data_layout.GetBlockPtr( memory_block, storage::DataLayout::MLD_CELL_TO_CHILDREN); auto children_entries_count = data_layout.GetBlockEntries(storage::DataLayout::MLD_CELL_TO_CHILDREN); util::vector_view cell_to_children(mld_chilren_ptr, children_entries_count); mld_partition = partitioner::MultiLevelPartitionView{level_data, partition, cell_to_children}; } const auto weights_block_id = static_cast( storage::DataLayout::MLD_CELL_WEIGHTS_0 + exclude_index); const auto durations_block_id = static_cast( storage::DataLayout::MLD_CELL_DURATIONS_0 + exclude_index); if (data_layout.GetBlockSize(weights_block_id) > 0) { auto mld_cell_weights_ptr = data_layout.GetBlockPtr(memory_block, weights_block_id); auto mld_cell_durations_ptr = data_layout.GetBlockPtr(memory_block, durations_block_id); auto weight_entries_count = data_layout.GetBlockEntries(storage::DataLayout::MLD_CELL_WEIGHTS_0); auto duration_entries_count = data_layout.GetBlockEntries(storage::DataLayout::MLD_CELL_DURATIONS_0); BOOST_ASSERT(weight_entries_count == duration_entries_count); util::vector_view weights(mld_cell_weights_ptr, weight_entries_count); util::vector_view durations(mld_cell_durations_ptr, duration_entries_count); mld_cell_metric = customizer::CellMetricView{std::move(weights), std::move(durations)}; } if (data_layout.GetBlockSize(storage::DataLayout::MLD_CELLS) > 0) { auto mld_source_boundary_ptr = data_layout.GetBlockPtr( memory_block, storage::DataLayout::MLD_CELL_SOURCE_BOUNDARY); auto mld_destination_boundary_ptr = data_layout.GetBlockPtr( memory_block, storage::DataLayout::MLD_CELL_DESTINATION_BOUNDARY); auto mld_cells_ptr = data_layout.GetBlockPtr( memory_block, storage::DataLayout::MLD_CELLS); auto mld_cell_level_offsets_ptr = data_layout.GetBlockPtr( memory_block, storage::DataLayout::MLD_CELL_LEVEL_OFFSETS); auto source_boundary_entries_count = data_layout.GetBlockEntries(storage::DataLayout::MLD_CELL_SOURCE_BOUNDARY); auto destination_boundary_entries_count = data_layout.GetBlockEntries(storage::DataLayout::MLD_CELL_DESTINATION_BOUNDARY); auto cells_entries_counts = data_layout.GetBlockEntries(storage::DataLayout::MLD_CELLS); auto cell_level_offsets_entries_count = data_layout.GetBlockEntries(storage::DataLayout::MLD_CELL_LEVEL_OFFSETS); util::vector_view source_boundary(mld_source_boundary_ptr, source_boundary_entries_count); util::vector_view destination_boundary(mld_destination_boundary_ptr, destination_boundary_entries_count); util::vector_view cells(mld_cells_ptr, cells_entries_counts); util::vector_view level_offsets(mld_cell_level_offsets_ptr, cell_level_offsets_entries_count); mld_cell_storage = partitioner::CellStorageView{std::move(source_boundary), std::move(destination_boundary), std::move(cells), std::move(level_offsets)}; } } void InitializeGraphPointer(storage::DataLayout &data_layout, char *memory_block) { auto graph_nodes_ptr = data_layout.GetBlockPtr( memory_block, storage::DataLayout::MLD_GRAPH_NODE_LIST); auto graph_edges_ptr = data_layout.GetBlockPtr( memory_block, storage::DataLayout::MLD_GRAPH_EDGE_LIST); auto graph_node_to_offset_ptr = data_layout.GetBlockPtr( memory_block, storage::DataLayout::MLD_GRAPH_NODE_TO_OFFSET); util::vector_view node_list( graph_nodes_ptr, data_layout.num_entries[storage::DataLayout::MLD_GRAPH_NODE_LIST]); util::vector_view edge_list( graph_edges_ptr, data_layout.num_entries[storage::DataLayout::MLD_GRAPH_EDGE_LIST]); util::vector_view node_to_offset( graph_node_to_offset_ptr, data_layout.num_entries[storage::DataLayout::MLD_GRAPH_NODE_TO_OFFSET]); query_graph = QueryGraph(std::move(node_list), std::move(edge_list), std::move(node_to_offset)); } // allocator that keeps the allocation data std::shared_ptr allocator; public: ContiguousInternalMemoryAlgorithmDataFacade( std::shared_ptr allocator_, const std::size_t exclude_index) : allocator(std::move(allocator_)) { InitializeInternalPointers(allocator->GetLayout(), allocator->GetMemory(), exclude_index); } const partitioner::MultiLevelPartitionView &GetMultiLevelPartition() const override { return mld_partition; } const partitioner::CellStorageView &GetCellStorage() const override { return mld_cell_storage; } const customizer::CellMetricView &GetCellMetric() const override { return mld_cell_metric; } // search graph access unsigned GetNumberOfNodes() const override final { return query_graph.GetNumberOfNodes(); } unsigned GetNumberOfEdges() const override final { return query_graph.GetNumberOfEdges(); } unsigned GetOutDegree(const NodeID n) const override final { return query_graph.GetOutDegree(n); } NodeID GetTarget(const EdgeID e) const override final { return query_graph.GetTarget(e); } const EdgeData &GetEdgeData(const EdgeID e) const override final { return query_graph.GetEdgeData(e); } EdgeRange GetAdjacentEdgeRange(const NodeID node) const override final { return query_graph.GetAdjacentEdgeRange(node); } EdgeRange GetBorderEdgeRange(const LevelID level, const NodeID node) const override final { return query_graph.GetBorderEdgeRange(level, node); } // searches for a specific edge EdgeID FindEdge(const NodeID from, const NodeID to) const override final { return query_graph.FindEdge(from, to); } }; template <> class ContiguousInternalMemoryDataFacade final : public ContiguousInternalMemoryDataFacadeBase, public ContiguousInternalMemoryAlgorithmDataFacade { private: public: ContiguousInternalMemoryDataFacade(std::shared_ptr allocator, const std::size_t exclude_index) : ContiguousInternalMemoryDataFacadeBase(allocator, exclude_index), ContiguousInternalMemoryAlgorithmDataFacade(allocator, exclude_index) { } }; } } } #endif // CONTIGUOUS_INTERNALMEM_DATAFACADE_HPP