Scripting at the Speed of
Thought

Jsing Lua in

ot

aaaaaaaaa

https://twitter.com/thephantomderp

Scripting

?

+—J
ol
=
O
V)
>
e
=

Y

e
=

(Y L
| &2 C
-

1 C

) |

1

o)
P
/]

(D

o
d
e
(O
d
c
O
)
V)
Q
=
)
)
)
o
0
C
)
O
S

)
oNn
C
>
oNn
-
C
—1

ipting

Lua, the Scr

)
@
O
O
O
e
=
2
a,
>
L

Lua C API: how-to-stack

Okay, let’s scale it up...

| ‘ 1T i e
¢ alpliia)] || i |
v S e e @ 1 i 1
11 224 ?
|

————

Limitations of C itself

Stack Namespace

» sol::stack nhamespace that gets rid of all the C code

e stack:: (v) -takes any value and pushes it with appropriate API
 stack::cet<T> -takes any type and retrieves it with appropriate API
 stack:: <[> -takes any type and reports if it exists

« “Type Rich” Programming
» Tells us how to push, how to get based on type / argument type
* Improves safety, increases developer throughput

Stack Namespace - Composed Operations

- o
- A\A/IC Fallhhacl £ AcafAanildls i getrtabhle
WANK AllDACK) dciadutltt tua
t 6 J | ’ it el boosady i R R NG
Y | £ 7T VaYiVall B Vd=~\Y \ 1™
1 s S C ICLUIAC YV LG %’
)
NTI1rY, =y N T LA\
1 / C & 1 49.'47}:/‘;: ’;

.........

.........

7

An example

-
on
-
@
-

L]

e

20

I

)
O

Z

Improving the Abstract

reference .

Layer O

C
£
)

O

O

-
+—J

n
0
<

19

=

-y
=i od @

=

5

{8

Rule of O

s
s
- T LU
- -
o - x5
L
< s

Layer O

. = .
T -
== - 5
\ : = O e
18 &)
=t ==
[/
. —
A« . 1 —
O | S S / 1 ”
=
© Ve ¥ o
u di =
{5
t ~ <5 .
(]
3 mv
- e,

https://wg21.link/p0468

Abstraction Layer 1: Reuse

Abstraction Layer 2: Proxy

* Need int x = f(obj) and my_class& y = (1, 2)
* Do not want to make 2 different types
« Simple struct that has a templated implicit conversion operator
o struct proxy { template <typename T> operator T () { ... } };

« my_table[“foo”] = “bar”; std::string bar = my_table[“foo”];
« Same as above, plus:
« operator= to handle assignment from anything
* operator|] to “chain” lookup with int x = my_table[“bark”][“bjork”];

Abstraction Layer 2: Problems

?

n
Q
x

F

Layer 2

Abstraction

Usertypes

iy

/ O

O
Z
N
<
=
<
v
-
S
(70
4,
ot
>
)
-
3,
72
-

DEMO IN PROGRESS

view. Currently, I'm

A S
rstate

t using both luabind and sol2 and it works perfectly

S

S1

des

Xottab_DUTY
| also need to say thanks for sol
Jus

But There’s More!

DEMO IN PROGRESS

It is FEATURE PACKED!

Amos

I'm about to have to hack some crap into OOlua....
1 just don't have time to switch just yet....
(@ThePhD We rely heavily on special like SSE/Neon/SIMD accelerated Vector/Matrix

type proxies to Lua for a bunch of math in our scripts... these things are sooo much prettier and
easier with over tors... but do you allow of i

Like Vector2 for example is divisible by both another Vector2 and a scalar... | have a scenario like
this (trivial case, there can be a locot of linear algebra going on in these scripts):

https://la.wentropy.com/3aGX

this is extremely slow.... 1000x slower than native
implementation

um, how can | optimize it

the code is simply an bfs calculation

--Clear out the range
local start = (Vector2:new(origin) - Vector2:new(radius))/32
local stop = (Vector2:new(origin) + Vector2:new(radius))/32

function bfs(s)
local frontier = create vector(1)
frontier[1] = s
local visited = create_flags(vertex_num)
local cnt = 8
while B < #frontier do

of inOOLua i the ic operators as Vector2 vs Vector2
types, yeah, it's not implemented for ints... so dividing by 32 there is expecting a Vector?
obvious solution is this:

1 i cnt = cnt + 1
--Clear out the range 5
local start = (Vector2:neu(origin) - l: (cnt > 1000)
Vector2:new(radius))/Vector2:new(32) then

return

local stop = (Vector2:new(origin) +
Vector2:new(radius))/Vector2:new(32)

en
next = create_vector(e)
for idx = 1, #frontier do
local node = frontier[idx]
visited[node] = true
local o = out(node)
for i = 1, #io do
local v = o[i]
if visited[v] == @
then
visited[v] = 1
next :add(v)

but honestly that's really really really bad for us in terms of performance. Al of these tiny little in-
line heap allocations Lua loves to do fragments the shit out of our 16MB of RAM on the
Dreamcast, so we really try not to do that.

So basically what | do in OOLua for stuff like t!
Is I've hacked in my "LuaVariant" type s like a first-class citizen in OOLua.. It treats it ke = *
a Lua primitive type and just knows how to push and pop.... Then | implement things like this:

inline Vector2 Vector2::operator/(Luavariant variant) const {
switch(variant.getType()) {
case LUA_TNUMBER: return *this/Vector2(variant.getvalue<float>

[9)H end
case LUA_TUSERDATA: d
if(variant.getTypeName() == "Vecter2") return o
*this/variant.getvalueVector2>(); end
default: break; //you dun fucked up frontier = next
end

}
return Vector2(e.ef); end

yeaaaaah, it's crazy, but my variant system really lets me do whatever-the-hell | want so |
can dance around OOLua's shortcomings, because it's really powerful.
But it's also inconvenient to have to do this type of things manually. lol.
That's seriously how | basically support function overloading in Lua by type, C++-style.
Basically | OOLua is just for registering types and methods easily and then | literally just

I'm using a bunch of vector in lua. | observed a lot of overheads when
random accessing
is it possible to get native dereference speed on lua side?

is there any recommended way to expose custom iterator

ranges to lua with sol? Le. | have some form of a containerview that
adds additional meta information to the underlying data that it is
iterating over. The iterators in question only dereference to value
types and hence won't compile with the existing container (as that
expects const T & or T & for * operator).

My current work around is to simply create a table in those

cases which is ok but not that nice for a lot of data.

Falco Girgis

DUUUDE
he supports overload
Wow, thanks.

| thought this was such an exotic request... and it's already there. Imao

| appreciate it!

Kisu

@ThePhD thanks for the tip about using the initializer_list
version! it brought my executable size almost back to what it was
and now it's not taking 5 minutes to link lol

ng overloaded operators out-of-the-box!?

moka 09/20/2018
awesome, thank youl!

moka 09,/20/2018
got it to work, appreciate all the useful pointers and examples!

Past Customization: Struct Specializations

» Specialize a template struct getter/checker/pusher
« Works and scales
» Users can add their own specializations

The structs below are already overriden for a handful of types. If you try to mes
thick template error traces and headaches. Overriding them for your own user de

struct: getter

template <typename T, typename = woid>

E struct getter |
: static T get (lua State* L, int index, records tracking) |

This is an SFINAE-friendly struct that is meant to expose static function get that r

Past Customizations: Problem with Structs

template <typename T> <T»>

struct pusher<Tx, std::enable_if_t<
meta::all<is_container<meta::unqualified_t<T>>,
meta::neg<is_lua_reference<meta::unqualified_t<T>>>>::value

p> 1

typedef std::add_pointer_t<meta::unqualified_t<std:: remove_pointer_t<T>>> (;

static int push(lua_Statex L, Tx cont) {
stack detail ::metatable setup<C> fx(L);
return pusher<detail::as_pointer tag<T>>{}.push fx(L, fx, cont);

}

‘}ﬁ

i../

Customization Layer Mk

Customization Layer MK. |I: Compile Harder

* N.B.: they are just regular functions
» Implement in cpp files, export them
« Compile heckin’ fast
« Everyone knows how to write a function (!!)

 Users do not have to understand SFINAE or template struct
specialization
» Vastly smaller amount of people SFINAE and struct specialize
« Decreases barrier to entry

v
oNn
0

(%2

-

>
-

o

=

v

=

-
2

i

Compile Times + Comp

Tuple and SFINAE: the Greater Evils

std::tuple::tuple

Defined in header <tuple=

constexpr tuplel();
tuple(const Types&... arg

template< class...
tuple(UTypes&&. ..

template< class... UTypes
tuple(const tuple<UTypes.)

template =class... UTypes=
tuple(tuple<UTypes...=&&

template< class U1, class
tuple(const pair<Ul,U2=&

since C++14)
ditionally explicit)
ince C++11)
ste xpr since C++14)
{conditionall y explicit)

template= class UL, class
tuple(pair<Ul,U2=&& p);

A Spark of Moonlit Inspiration...

« “Can | keep the same speed and still remove tuple and a lot of
compile time information”?

« Benchmark cpp file for sol3 took about 15% less time than sol2 benchmark
file
« But did we keep the same performance?!

So | implemented it. Today.

* In the dark of the night. Just before my presentation.

* The “l Like Anxiety” Challenge:

« Ran benchmarks overnight and promised myself that | would modify
presentation with the numbers in the morning

ldea: Virtual Base class, templated data?

 Essentially:
» std::vector<std::unique_ptr<binding_base>>

* Do 4 things:
» Store data in vector to give it a never-changing memory address
« Get data as void* to transport through Lua + templated free function
« Make sure either side of Lua abstraction preserves type information
» Pass along the exact address

7

Sun Came Up, Benchmarks Finished...

N

1Ce.

plain_c

sol3

oolua

sol2

luwra
lua_api_pp
kaguya
luacppinterface
luabind
luawrapper

member function call

selene 4

SWig
lua_intf
luabridge
old sol
toluapp

e
bl ol e ol ol e ol ol e e e ke ok ol ol whe ol e e ol ol ke e kol o

100.0 200.0 300.0 400.0 500.0 000.0
real time measured in nanoseconds - lower is better

700.0

N

1Ce.

plain_c
sol2

old sol
sol3
luabind
SWigQ
luawrapper
toluapp
luabridge
lua_intf
selene
oolua
luwra

luacppinterface
lua_api pp
kaguya

userdata variable access

T R R R R R R R R
A i i i ol e ol i o i ol il ol

100.0 200.0 300.0 400.0 500.0 000.0 J00.0
real time measured in nanoseconds - lower is better

N

1Ce.

plain_c

old sol

sol3

sol2
luabind
luawrapper
lua_intf
toluapp
SWIQ

selene
oolua

luwra
luacppinterface
luabridge
lua_api pp
kaguya

userdata variable access large

unsupported

unsupported

10.0 20.0 30.0 40.0
real_time measured in microseconds - lower is better

50.0

N

1Ce.

oolua
plain_c
sSWig
twoluapp
luabridge
sol3
lua_intf
sol2
kaguya
selene

old sol
luwra
luawrapper
luacppinterface
luabind
lua_api_pp

implicit inheritance

unsupported

unsupported

400.0 000.0 800.0
real time measured in nanoseconds - lower is better

ot
o
-
©
Z

My @ felt gratitude...

» #include - for the graphs and being a wonderful community
* Inspired a Python Talk

« Companies and individuals who have used sol2 to success and have
recommended it to others!

« Corentin, Elias Daler, Orfeasz, Xottab_DUTY, and donators up to this point!
« Jason Turner for telling me to start talking about sol2 and sol3!

* Mother Eugenie, Sister Lorigiana

//4
/

Z ///// 'y

%

el

| 1€

.—./p.-

Thank YOU fo

| | = . N k 1 @ o
[1 « ~vrA N r CoAa ;
S 11dld LO (>eéan

O

https://www.linkedin.com/in/thephd
https://www.patreon.com/thephd
https://twitter.com/thephantomderp
https://github.com/ThePhD/
https://github.com/ThePhD/sol2

