
Compile Fast

Run Faster

Scale Forever

A Look into the sol Lua Binding Library

ThePhD

May 10th, 2018

Why “ThePhD”?

 It’s a std::promise<> for my std::future<>

 Finishing undergrad in about a year

 Debating industry vs. graduate school

 Actually stands for “The Phantom Derpstorm”

 ’cause bad at video games 😅

Lua

 Small scripting language used in tons of places

 Databases (e.g. Redis)

 Operating System components

 Tons of game projects/engines that are not Unreal

 High Performance Computing projects

 GUI Scripting (Waze/OpenMPT)

 Chat servers, Server management

 And so on and so forth…

sol2

 Lua <-> C++ interop library

 Started by Danny “Rapptz” Y. (M.D.) as just sol

 C++14 and better

 sol3: Making a break for C++17/20 soon

 Written on top of Lua C API

 Provides C API compatibility layers

Established

 sol is Mature, used in many industries and projects

 Has competed against all other libraries (20+) and more or less survived + thrived

 Except in the case of compilation speed

The Interface

What exactly would make a good interface for Lua in C++?

Language Parity

 Lua has….

 Tables (serves as arrays, maps, class-proxies, …)

 Numbers (always doubles until Lua 5.3, which introduced integers up to 64 bits signed)

 Functions (as first class citizens, closures are easy)

 Strings (Lua literals are encoded as utf8 by default)

Let me show you…

What would C++ look like…?

double timing = lua[“timing”];
function func = lua[“func”];
bool result = func(1, 2);
std::tuple<int, int> result2 = lua[“callable”](4, 2); // multiple returns

lua[“signal”] = true;
lua[“signals”] = make_new_table();
lua[“signals”][1] = [](int v) { std::cout << “beep with” << v << ‘\n’; };

lua.script(“if signal then signals[1](20) else print(‘boop’)”);

“Pinching Point”

The stack abstraction and why it matters

Stacks!

 Lua’s C API is stack-based

 Annoying to manage, even when understood

 Defines all interop for types

 Primitives (numbers (integers), strings, tables, functions) to complex entities

 Custom types (userdata, lightuserdata)

Good to use for simple things…

 my_table[“a”]

 get ‘my_table’ global – lua_getglobal(L, “my_table”)

 get field – lua_getfield(L, -1, “a”) // negative numbers count from top of stack

 retrieve value: lua_to{x}(…) value (where x is number/userdata/string)

 my_func(2)

 push ‘my_func’ global function – lua_getglobal(L, “my_func”)

 push argument – lua_pushnumber(L, 2)

 call, get return(s) – lua_pcall(…), lua_to{x}(…), lua_pop(L, …)

(╯°□°）╯︵┻━┻ !!

 other_func(
my_table[“a”][“b”],
my_func(2)

)

 Lua’s C API does not scale with complexity

 amount of necessary boilerplate

 developer time

sol::stack

 Non-self-balancing, stack-changing API wrappers

 sol::stack::get<Type>(L, stack_index, record);

 int num_pushed = sol::stack::push(L, anything);

 sol::stack::check<Type>(L, stack_index, handler, record);

 sol::stack::check_get<Type>(L, stack_index, handler, record);

 int res = stack::lua_call<…>(L, from, cpp_callable, extra_arguments…);

 record tracks how many items are used / pulled from the stack

Fixed interop points

 Each struct is a template that has a sole responsibility, can override for custom behavior

 struct sol::stack::getter<T, C= void> (.get(…))

 struct sol::stack::pusher<T, C= void> (.push(…))

 struct sol::stack::checker<T, sol::type, C= void> (.check(…))

 struct sol::stack::check_getter<T, sol::type, C= void> (.check_get(…))

 sol::stack::lua_call<…>(…) uses other functions to perform the call

Scalability requires Defaults

 Problem: C++ has a lot more types than integers, floating point, strings, functions and

table-alikes

 Need a sane default for some user-defined type T

 Treated as userdata, which is a blob of memory

Some Types are Special

 std::pair / std::tuple

 Lua has multiple returns, allow multiple-returns from C++ with these

 std::vector/std::list/std::map/ … - Lua has tables which emulates these

 convert to table (expensive, but plays nice), or

 store C++ container userdata (direct, fast, but plays less nice with Lua ecosystem)

 std::wstring/std::u16string/std::u32string

 Unsurprisingly, people want these types to work – must UTF encode on push and on get.

What we are doing

 Uniform conversions to and from, based on type

 System is now well-defined for any given type, and easier to reason about

get
check(_get)

push
C++ Lua

sol::reference

The cornerstone abstraction

Rule of 0 for Lua Binding

 sol::reference is a reference-counting object for something that is taken from Lua

 Stored in the Lua registry, a heap of memory to keep Lua objects alive

 Slower than stack, faster than literally any other serialization scheme

 Basically a Lua-specific version of the upcoming std::retain_ptr<T, R>

 https://wg21.link/p0468r0

Formula for Success

 1 – Derive from sol::reference

 2 – Add no data members, just functionality and type-safety

 3 – ???

4 – Profit

 sol::object – generic object for doing .is<T>() checks and .as<T>() conversions

 sol::table – allows operator[] indexing

 sol::function – allows operator() for calling in C++

 sol::thread – encapsulates a Lua thread (not like a C++ thread; it’s separate stack

space)

 sol::coroutine – like sol::function, but works off a stack space (thread)

 sol::state_view – cheap look at a Lua state, takes out a sol::table for registry and globals

 sol::state – sol::state_view + std::unique_ptr<lua_State*, lua_closer>

Magical Abstractions

Proxies, conversions and the missing Language Feature

Tables and []

 Need to be able to apply the access-operator [] on tables

 Optimizations to be applied for nested lookups – my_table[“bark”][“woof”]

 Table lookup and global lookup actually have different C calls for Lua’s C API

 Picking the right one / wrong one changes performances characteristics

 … But gives same results (“API Trap”)

operator[]

 Lazily concatenates / saves keys, generating a new proxy type

 1 tuple entry per operator [] lookup

 Commits lookup on any kind of assignment to proxy or implicit conversion of proxy

auto x = lua[“woof”][“bark”][1];

// decltype(x) == proxy<sol::global_table, const char*, const char*, int>

double value = x;

// triggers chained reads, attempts to conver to double

x = “woof”;

// triggers chained read into tables, then write into 1

proxy(_base) and friends

 Let’s take a peek…

What was all that SFINAE, exactly?

 Consider the simple case:

struct int_proxy {
operator int () { return 2; }

};

int_proxy ip{};
int value = ip; :/ nice, conversion
const char* value_2 = ip; :/ boom, no conversion

Scaling up -🦄 Proxy

struct unicorn_proxy {
template <typename T>
operator T () {

:* arbitrary code can go here :/
return …;

}

};

unicorn_proxy up{};
int value = up; :/ nice, conversion
const char* value_2 = up; :/ yay!

Oh no! 🗡️🦄

struct unicorn_proxy {
template <typename T>
operator T () {

/* arbitrary code can go here */
return …;

}
};

unicorn_proxy up{};
int a, b;
std::tie(a, b) = up; // Kaboooooom!

Left Hand Side is Queen

 Implicit conversion operators take the type of the left hand side

 Exactly, with no modifications

 Cannot return a reference that is not fixed in memory

 ☠️ Cannot SFINAE/change return type! ☠️

 Type “T” is not a regular return type

 Cannot apply transformations not allowed by the language (only T& and T-style returns work)

Soon™ Paper: Extended Conversions

struct unicorn_proxy {
template <typename T>
int operator T () { :/ deduce from LHS…

return 42; :/ but return whatever you want
}

};

function_result

 Just another kind of proxy that has the same issues, manifests in other ways

Lua
function f (v)

return v, v * 2
end

C++

double a, b;
std::tie(a, b) = lua[“f”](2); :/ error: std::tuple<int&, int&> return
sol::tie(a, b) = lua[“f”](2); :/ ✔️: custom expansion and op=

Usertypes

A demo…

Overloading

Simple compile-time Overload Set reduction

Overloading

struct my_class {};
int bark (int arg);
int woof (std::string arg);
int bork (int arg1, bool arg2, double arg3, std::vector<double> arg4);
int borf (bool arg);
int yip (my_class& arg1, bool arg2);

:/ create overloaded set
lua[“f”] = sol::overload(bark, woof, bork, borf, yip);

 What kind of cost to select right overload if we do: f(my_class.new(), true) in Lua?

Simulate

Lua calls:
f(my_class.new(), true)

must match:
my_class&, bool (arity of 2)

bark woof bork borf yip

1 arg 1 arg 4 args 1 arg 2 args

Simulate

bark woof bork borf yip

1 arg 1 arg 4 args 1 arg 2 args

Lua calls:
f(my_class.new(), true)

must match:
my_class&, bool (arity of 2)

Arity != 1

Simulate

bark woof bork borf yip

1 arg 1 arg 4 args 1 arg 2 args

Lua calls:
f(my_class.new(), true)

must match:
my_class&, bool (arity of 2)

Disallowed: std::integer_sequence<1>

Simulate

bark woof bork borf yip

1 arg 1 arg 4 args 1 arg 2 args

Lua calls:
f(my_class.new(), true)

must match:
my_class&, bool (arity of 2)

Disallowed: std::integer_sequence<1>

Arity != 4

Simulate

bark woof bork borf yip

1 arg 1 arg 4 args 1 arg 2 args

Lua calls:
f(my_class.new(), true)

must match:
my_class&, bool (arity of 2)

Disallowed: std::integer_sequence<1, 4>

Arity == 2

Check types…

Simulate

bark woof bork borf yip ✔️

1 arg 1 arg 4 args 1 arg 2 args✔️

Lua calls:
f(my_class.new(), true)

must match:
my_class&, bool (arity of 2)

Disallowed: std::integer_sequence<1, 4>

Safety is Optional

But not std::optional

Queries can be made safe…

int value = lua[“value”];
my_class my_obj = lua[“my_obj”];

my_class& my_obj_r = lua[“my_obj”]; // can manipulate memory directly
my_class* my_obj_p = lua[“my_obj”]; // can manipulate memory directly

sol::function func = lua[“func”];
double x = f();

By slapping optional on it / checking

sol::optional<int> safe_value = lua[“value”];
sol::optional<my_class> safe_my_obj = lua[“my_obj”];

sol::optional<my_class&> safe_my_obj_r = lua[“my_obj”]; // nil = unengaged
sol::optional<my_class*> safe_my_obj_p = lua[“my_obj”]; // nil = engaged

sol::function func = lua[“func”];
if (!func.valid()) { throw std::runtime_error(“aaah”); }
sol::optional<double> x = f();

std::optional does NOT cut it

 For the reference case, would have to use some non_null<T*> struct and put that in

optional

 gsl::non_null is an alias, not a real struct – cannot control Proxy expressions based on it

 Overhead for the struct + boolean (optional<T&> is compact)

 Breaks library teaching:

 “If you want safety, just wrap X in an optional”, compared to

 “If you want safety, just wrap X in an optional, unless it’s a reference, then you need to use…”

Soon™ Paper: std::optional<T&>

 Rebind on assignment

 Only sane behavior

 Do not allow rvalues to be assigned into optional reference

 Prevents dangling lifetime issues

 Reduce internal boilerplate code

std::promise<sol>

What things are in the future for sol

Sol3: why?

https://github.com/ThePhD/sol2/issues/538

“I had spent a whole day for

moving my binding from tolua++

to sol2, I found my xcode

became very very lag and

compile time is about 10

minutes with about 8G heap,so I

have to abandon xcode for

coding.

I had spent another whole day

for moving my binding from sol2

to kaguya, compile time is

about 2-3 seconds.”

https://github.com/ThePhD/sol2/issues/538

Compile Times MATTER

 Variadic templates lose absolutely 0 information in propagation

 Can optimize the entire run time like crazy

 Overused, overzealous application: reduce with initializer_list and other techniques

 Saving compiler performance is a must

 Will lose users without it

if constexpr

 Probably the biggest thing that can be done

 There is a LOT of tag-dispatch and SFINAE that ultimate results in binary choices

 Things with fallbacks are the perfect candidate

Bloatymcbloatface

 People have used this tool on executable which utilize sol2 and other analysis techniques

on debug/release binaries

 The amount of symbols / spam is E N O R M O U S

But the goal was runtime speed, right…?

 Right:

http://sol2.readthedocs.io/en/latest/benchmarks.html

http://sol2.readthedocs.io/en/latest/benchmarks.html

The Last and Most Important Thing

Super important, I swear

DOCUMENTATION!!!

https://github.com/ThePhD/sol2/issues/36

“Greetings. I used to use Sol but

could not figure out how it works

… and thus quickly switched

over to Selene, since on its main

page it had a much better

tutorial/how-to-manual.

However now I'm currently using

Selene and thinking about

switching to Sol2 (because it

supports LuaJit, being able to

switch between luajit and lua5.3

for comparison is quite nice)

and i think has more features.”

https://github.com/ThePhD/sol2/issues/36

The Backbone of Any Project

 Some projects are the “only alternative” so rather than reinvent

 People muck through it and class APIs

 Join an IRC to understand

 Read the library’s tests to understand

 sol has 20+ competitors, with more NIH Syndrome spawns more bindings

 Bled users everywhere because of no docs

http://sol2.rtfd.io/

http://sol2.rtfd.io/

Thanks and Shilling

 Support me and my family

 Donation Links at the bottom of Docs Front Page and Readme

 Donations have kept me fed for this trip, woo!

 THANK YOU!:

 Donators: Robert Salvet, Ορφέας Ζαφείρης, Michael Waller, Elias Daler (Dailidzionak Ilya) and

Johannes Schultz

 All of sol2’s users over the years

My Gratitude

 Mark Zeren of VMWare, Simon Brand (@TartanLlama) of Codeplay

 Pushed me to apply as a student Volunteer

 Words of encouragement are powerful things ❤️

 Jason Turner (@lefticus)

 Spoke about sol before I ever had plans for it

 Really encouraged me to speak and finally got to meet him 😄

 I’m going to appear on CppCast! Monday, May 21st, 2018

More Gratitude

 Hipony (Alexandr Timofeev) and kyzo (Alexander Scigajlo) for helping me bikeshed the

logo in the Cpplang Slack!

 #include

 for showing me that even if there might not be people like me in many of the places I am going

and want to go, that they will accept me as a regular human being all the same

 Lounge<C++>

 For always dragging me back in and being all around amazing nerds with great senses of humor

Questions? Comments?

 E-mail: phdofthehouse@gmail.com

 Twitter: @thephantomderp

 Linkedin: https://www.linkedin.com/in/thephd/

 Repository: https://github.com/ThePhD/sol2

