
ThePhD

phdofthehouse@gmail.com

@thephantomderp

https://github.com/ThePhD/sol2/

October 14th, 2016

https://twitter.com/thephantomderp
https://github.com/ThePhD/sol2/

Lua & Lua C API
 Lua



 Lua C API
 stateful, stack-based
 well-documented
 mostly clear semantics / mappings

3 of 38

Limitations of Lua C API
 Stack-Based

 Hard to grok sometimes
 Must clean up or following operations will overflow the

stack

 Simple in Lua ≠ Simple in API
 Incredible amounts of boilerplate
 Efficient stack management is hard

4 of 38

Lua C API can do Simple Things
 my_table[“a”]

 get ‘my_table’ global
 get field
 lua_to{x} value

 my_func(2)
 push `my_func` global function
 push argument
 call, get return(s)

5 of 38

(╯°□°）╯︵ ┻━┻

 other_func(
my_table[“a”][“b”], my_func(2)

)

 Lua C API does not scale
 amount of necessary boilerplate
 developer time

6 of 38

Limitations of C
 No overloading

 “which one do I need, again?”
 Hard to specialize general-purpose routines

lua_gettable()
lua_getglobal(const char*)
lua_getfield(const char*)
lua_geti(int) [5.3+]

lua_rawgeti(int)
lua_rawget()
lua_rawgetp(void*)

7 of 38

Okay… so we wrap it?
 Type tells us what we need to do

 Overloading/Dispatching to cover up the base
 Stuff implementation details into various functions

8 of 38

More MeatPower
 Higher-level, complex operations

 Calling a function
 with complex arguments

 Tables
 with nested lookup

 Structured data
 Mimicking C, C++ structures

9 of 38

Sol2
 Started by Danny Y. “Rapptz”

 Unmaintained because he has other great ideas
 Pull requests sitting dead in repository

 Rewritten, developed into Sol2

10 of 38

Disclaimers
 I’m the author of sol2

 I did not author the 12 other benchmarked libraries
 E-mailed every single library author, however
 All of them got back to me with proper usage notes

 Great benchmarking technology
 nonius: https://nonius.io/
 statistically-significant benchmarking
 much better than my hand-rolled loops

11 of 38

https://nonius.io/

sol::stack
 The core of the API; usually never seen

lua_State* L = ...;
sol::stack::get_field<true>(L, "some_key");
int the_value = sol::stack::get<int>(L, -1);
lua_pop(L, 1);

lua_createtable(L, 0, 2);
sol::stack_reference ref(L, -1);
sol::stack::set_field(L, 1, "val1");
sol::stack::set_field(L, 2, "val2", ref.stack_index());
ref.pop();

http://sol2.readthedocs.io/en/latest/api/stack.html 12 of 38

http://sol2.readthedocs.io/en/latest/api/stack.html

Basics
 Demonstrating some basics

 Load a config file, mess with it

number = 24
number2 = 24.5
important_string = 'woof woof'
some_table = { value = 48 }
function bark (val)

print(val .. ' waf waf!')
end

config.lua

13 of 38

Basics - tables
sol::state lua;
lua.open_libraries(sol::lib::base);
lua.script_file("config.lua");

int number = lua["number"];
std::string important_string = lua["important_string"];
int value = lua["some_table"]["value"];

sol::optional<int> safe = lua[“this_is"]["not_real"];
int default_value = safe ? safe.value() : 24; // 24

http://sol2.readthedocs.io/en/latest/tutorial/all-the-things.html 14 of 38

http://sol2.readthedocs.io/en/latest/tutorial/all-the-things.html
http://sol2.readthedocs.io/en/latest/tutorial/all-the-things.html
http://sol2.readthedocs.io/en/latest/tutorial/all-the-things.html
http://sol2.readthedocs.io/en/latest/tutorial/all-the-things.html
http://sol2.readthedocs.io/en/latest/tutorial/all-the-things.html

Basics - functions
sol::function bark = lua["bark"];
bark(lua["important_string"]); // woof woof waf waf!

lua["woof"] = []() { std::cout << "Hey there!" << std::endl; };

lua.script("woof()"); // prints "Hey there!"

 Very easy to use
 Painless to set up
 Can be used without sol::state; just lua_State*

http://sol2.readthedocs.io/en/latest/tutorial/functions.html 15 of 38

http://sol2.readthedocs.io/en/latest/tutorial/all-the-things.html

16 of 38

17 of 38

18 of 38

usertype
 The Big One™ - best part of Sol2

 member function/variable bindings
 metamethod

 automatically generated equality/comparison methods

 properties (like luabind)!
 static functions as member functions

 Take self argument

 static variables, functions
 (simple_usertype) runtime extensible

http://sol2.readthedocs.io/en/latest/api/usertype.html 19 of 38

http://sol2.readthedocs.io/en/latest/api/usertype.html

usertype – a live example

20 of 38

Implementation - functions

userdata metatable
of functions

__(new)index:
itself

21 of 38

22 of 38

Implementation - variables

userdata metatable
of functions

__(new)index:
lua_CFunction

23 of 38

24 of 38

Implementation – variables, speed

userdata pass-off table

metatable
with functions

__(new)index:
lua_CFunction

__(new)index:
second table

25 of 38

:(
 Can’t use the speed method

 userdata not ‘failed lookup’ item
 metatable is the ‘failed lookup’ item
 2x-4x performance hit for ALL methods/variables

 Karel Tuma patched item in his LuaJIT fork

 metatable-per-userdata?

26 of 38

27 of 38

“I think it’s better than Selene”
 - Shohnwal, March 21, 2016
 Sol2 had better support at the time

 Failure to communicate, so improved: http://sol2.rtfd.io

https://github.com/ThePhD/sol2/issues/36 28 of 38

http://sol2.rtfd.io/
https://github.com/ThePhD/sol2/issues/36

Benchmarks
“To be honest with you, Sol2 is the first binding library I

have compared against where I have had to disable
runtime checks in OOLua”
– Liam Devine, OOLua,
https://github.com/ThePhD/sol2/issues/156#issuecomment-236913783

https://github.com/ThePhD/lua-bench 29 of 38

https://github.com/ThePhD/lua-bench
https://github.com/ThePhD/lua-bench

Lua wants
 __index/__newindex extra argument fix

 add the original userdata / table that triggers the whole
lookup cascade as the last argument

 keeps backwards compatibility, enable efficient member
function lookup

 New GC
 corsix is on it with LuaJIT !

30 of 38

Thanks To
 Professor Gail E. Kaiser

 COMS E6156 – Advanced Software Engineering

 Iris Zhang
 Vetted documentation

 Kevin Brightwell (: Nava2)
 Took great interest in sol2 before anyone else
 Vastly improved the CI

 https://travis-ci.org/ThePhD/sol2
31 of 38

https://travis-ci.org/ThePhD/sol2
https://github.com/ThePhD/sol2/

Thanks To
 Lounge<C++>

 Elias Daler (@EliasDaler), Eevee (@eevee)
 Blogposts (https://eev.ee, https://elias-daler.github.io)

 Jason Turner (@lefticus)
 Encouraged me to present, talk about Sol2
 Runs CppCast (http://cppcast.com)

32 of 38

http://eev.ee/
http://elias-daler.github.io/
http://cppcast.com/

Thank You!
 Questions and/or Comments?

 If you end up using Sol2, tell me about it here:
https://github.com/ThePhD/sol2/issues/189

 Thoughts about Future Direction?

 Concerns?
 …. Lunch?~

33 of 38

https://github.com/ThePhD/sol2/issues/189

Bug Hunting
 “The road to success in Software Development is paved

with the tears of your failed tests and the sleepless
nights over your Heisenbugs.” - Some Poor Developer

34 of 38

Lua
 Very few actual bugs in the implementation, except…!
 Investigating one now

 Compile with C++
 pcall from a C function that throws an exception

 returns -1 (not a defined error)
 does not even clean stack?

35 of 38

Clang
 “internal linkage” bugs
 Excessively pedantic

 “condition is the result of a constant”
 it’s a template argument, clang, please stop torturing me with

all these warnings :<

 apple-clang’s only purpose is to literally introduce new
strange, build-breaking, progress-stopping bugs
 negative value on enum breaks demangler
 forced us to parse from __PRETTY_FUNCTION__

36 of 38

VC++ (Visual Studio)
 Help

Me… !

37 of 38

GCC
 Less compiler bugs

 auto&& in lambda declaration
 More actual unsupported features

 has_* vs. is_* trait debacle
 extended constexpr not backported to GCC 4.x.x

38 of 38

	No Overhead? �Zero-Cost Lua C API Abstraction
	No Problem.
	Lua & Lua C API
	Limitations of Lua C API
	Lua C API can do Simple Things
	(╯°□°）╯︵ ┻━┻
	Limitations of C
	Okay… so we wrap it?
	More MeatPower
	Sol2
	Disclaimers
	sol::stack
	Basics
	Basics - tables
	Basics - functions
	Slide Number 16
	Slide Number 17
	Slide Number 18
	usertype
	usertype – a live example
	Implementation - functions
	Slide Number 22
	Implementation - variables
	Slide Number 24
	Implementation – variables, speed
	:(
	Slide Number 27
	“I think it’s better than Selene”
	Benchmarks
	Lua wants
	Thanks To
	Thanks To
	Thank You!
	Bug Hunting
	Lua
	Clang
	VC++ (Visual Studio)
	GCC

