#ifndef ENGINE_GUIDANCE_ASSEMBLE_LEG_HPP_
#define ENGINE_GUIDANCE_ASSEMBLE_LEG_HPP_

#include "engine/datafacade/datafacade_base.hpp"
#include "engine/guidance/leg_geometry.hpp"
#include "engine/guidance/route_leg.hpp"
#include "engine/guidance/route_step.hpp"
#include "engine/internal_route_result.hpp"
#include "util/coordinate_calculation.hpp"
#include "util/typedefs.hpp"

#include <boost/algorithm/string/join.hpp>
#include <boost/range/adaptor/filtered.hpp>
#include <boost/range/adaptor/transformed.hpp>

#include <cstddef>
#include <cstdint>

#include <algorithm>
#include <array>
#include <numeric>
#include <string>
#include <utility>
#include <vector>

namespace osrm::engine::guidance
{
namespace detail
{
const constexpr std::size_t MAX_USED_SEGMENTS = 2;
struct NamedSegment
{
    EdgeDuration duration;
    std::uint32_t position;
    std::uint32_t name_id;
};

template <std::size_t SegmentNumber>

std::array<std::uint32_t, SegmentNumber> summarizeRoute(const datafacade::BaseDataFacade &facade,
                                                        const std::vector<PathData> &route_data,
                                                        const PhantomNode &target_node,
                                                        const bool target_traversed_in_reverse)
{
    // merges segments with same name id
    const auto collapse_segments = [](std::vector<NamedSegment> &segments)
    {
        auto out = segments.begin();
        auto end = segments.end();

        // Do nothing if we were given an empty array
        if (out == end)
        {
            return end;
        }

        for (auto in = std::next(out); in != end; ++in)
        {
            if (in->name_id == out->name_id)
            {
                out->duration += in->duration;
            }
            else
            {
                ++out;
                BOOST_ASSERT(out != end);
                *out = *in;
            }
        }
        BOOST_ASSERT(out != end);
        return ++out;
    };

    std::vector<NamedSegment> segments(route_data.size());
    std::uint32_t index = 0;
    std::transform(route_data.begin(),
                   route_data.end(),
                   segments.begin(),
                   [&index, &facade](const PathData &point)
                   {
                       return NamedSegment{point.duration_until_turn,
                                           index++,
                                           facade.GetNameIndex(point.from_edge_based_node)};
                   });
    const auto target_duration =
        target_traversed_in_reverse ? target_node.reverse_duration : target_node.forward_duration;
    const auto target_node_id = target_traversed_in_reverse ? target_node.reverse_segment_id.id
                                                            : target_node.forward_segment_id.id;
    if (target_duration > EdgeDuration{1})
        segments.push_back({target_duration, index++, facade.GetNameIndex(target_node_id)});
    // this makes sure that the segment with the lowest position comes first
    std::sort(segments.begin(),
              segments.end(),
              [](const NamedSegment &lhs, const NamedSegment &rhs)
              {
                  return lhs.name_id < rhs.name_id ||
                         (lhs.name_id == rhs.name_id && lhs.position < rhs.position);
              });
    auto new_end = collapse_segments(segments);
    segments.resize(new_end - segments.begin());

    // Filter out segments with an empty name (name_id == 0)
    new_end = std::remove_if(segments.begin(),
                             segments.end(),
                             [](const NamedSegment &segment) { return segment.name_id == 0; });
    segments.resize(new_end - segments.begin());

    // sort descending
    std::sort(segments.begin(),
              segments.end(),
              [](const NamedSegment &lhs, const NamedSegment &rhs)
              {
                  return lhs.duration > rhs.duration ||
                         (lhs.duration == rhs.duration && lhs.position < rhs.position);
              });

    // make sure the segments are sorted by position
    segments.resize(std::min(segments.size(), SegmentNumber));
    std::sort(segments.begin(),
              segments.end(),
              [](const NamedSegment &lhs, const NamedSegment &rhs)
              { return lhs.position < rhs.position; });

    std::array<std::uint32_t, SegmentNumber> summary;
    std::fill(summary.begin(), summary.end(), EMPTY_NAMEID);
    std::transform(segments.begin(),
                   segments.end(),
                   summary.begin(),
                   [](const NamedSegment &segment) { return segment.name_id; });
    return summary;
}
} // namespace detail

inline std::string assembleSummary(const datafacade::BaseDataFacade &facade,
                                   const std::vector<PathData> &route_data,
                                   const PhantomNode &target_node,
                                   const bool target_traversed_in_reverse)
{
    auto summary_array = detail::summarizeRoute<detail::MAX_USED_SEGMENTS>(
        facade, route_data, target_node, target_traversed_in_reverse);

    BOOST_ASSERT(detail::MAX_USED_SEGMENTS > 0);
    BOOST_ASSERT(summary_array.begin() != summary_array.end());

    // transform a name_id into a string containing either the name, or -if the name is empty-
    // the reference.
    const auto name_id_to_string = [&](const NameID name_id)
    {
        const auto name = facade.GetNameForID(name_id);
        if (!name.empty())
            return std::string(name);
        else
        {
            const auto ref = facade.GetRefForID(name_id);
            return std::string(ref);
        }
    };

    const auto not_empty = [&](const std::string &name) { return !name.empty(); };

    const auto summary_names = summary_array | boost::adaptors::transformed(name_id_to_string) |
                               boost::adaptors::filtered(not_empty);
    return boost::algorithm::join(summary_names, ", ");
}

inline RouteLeg assembleLeg(const datafacade::BaseDataFacade &facade,
                            const std::vector<PathData> &route_data,
                            const PhantomNode &source_node,
                            const PhantomNode &target_node,
                            const bool target_traversed_in_reverse)
{
    auto distance = 0.;
    auto prev_coordinate = source_node.location;
    for (const auto &path_point : route_data)
    {
        auto coordinate = facade.GetCoordinateOfNode(path_point.turn_via_node);
        distance += util::coordinate_calculation::greatCircleDistance(prev_coordinate, coordinate);
        prev_coordinate = coordinate;
    }
    distance +=
        util::coordinate_calculation::greatCircleDistance(prev_coordinate, target_node.location);

    const auto target_duration =
        (target_traversed_in_reverse ? target_node.reverse_duration : target_node.forward_duration);
    const auto target_weight =
        (target_traversed_in_reverse ? target_node.reverse_weight : target_node.forward_weight);

    auto duration = std::accumulate(route_data.begin(),
                                    route_data.end(),
                                    0,
                                    [](const double sum, const PathData &data)
                                    { return sum + from_alias<double>(data.duration_until_turn); });
    auto weight = std::accumulate(route_data.begin(),
                                  route_data.end(),
                                  0,
                                  [](const double sum, const PathData &data)
                                  { return sum + from_alias<double>(data.weight_until_turn); });

    //                 s
    //                 |
    // Given a route a---b---c  where there is a right turn at c.
    //                       |
    //                       d
    //                       |--t
    //                       e
    // (a, b, c) gets compressed to (a,c)
    // (c, d, e) gets compressed to (c,e)
    // The duration of the turn (a,c) -> (c,e) will be the duration of (a,c) (e.g. the duration
    // of (a,b,c)).
    // The phantom node of s will contain:
    // `forward_duration`: duration of (a,s)
    // `forward_offset`: 0 (its the first segment)
    // The phantom node of t will contain:
    // `forward_duration`: duration of (d,t)
    // `forward_offset`: duration of (c, d)
    // path_data will have entries for (s,b), (b, c), (c, d) but (d, t) is only
    // caputed by the phantom node. So we need to add the target duration here.
    // On local segments, the target duration is already part of the duration, however.

    duration = duration + from_alias<double>(target_duration);
    weight = weight + from_alias<double>(target_weight);
    if (route_data.empty())
    {
        weight -= from_alias<double>(target_traversed_in_reverse ? source_node.reverse_weight
                                                                 : source_node.forward_weight);
        duration -= from_alias<double>(target_traversed_in_reverse ? source_node.reverse_duration
                                                                   : source_node.forward_duration);
        // use rectified linear unit function to avoid negative duration values
        // due to flooring errors in phantom snapping
        duration = std::max(0, duration);
    }

    return RouteLeg{std::round(distance * 10.) / 10.,
                    duration / 10.,
                    weight / facade.GetWeightMultiplier(),
                    "",
                    {}};
}

} // namespace osrm::engine::guidance

#endif // ENGINE_GUIDANCE_SEGMENT_LIST_HPP_