Optimise R-tree queries in the case if there is no need to limit maximum number of results

This commit is contained in:
Siarhei Fedartsou 2024-05-13 18:17:49 +02:00
parent 9f80b43ec1
commit fc4fa10346

View File

@ -487,70 +487,9 @@ class StaticRTree
Rectangle needs to be projected!*/
std::vector<EdgeDataT> SearchInBox(const Rectangle &search_rectangle) const
{
const Rectangle projected_rectangle{
search_rectangle.min_lon,
search_rectangle.max_lon,
toFixed(FloatLatitude{
web_mercator::latToY(toFloating(FixedLatitude(search_rectangle.min_lat)))}),
toFixed(FloatLatitude{
web_mercator::latToY(toFloating(FixedLatitude(search_rectangle.max_lat)))})};
std::vector<EdgeDataT> results;
std::queue<TreeIndex> traversal_queue;
traversal_queue.push(TreeIndex{});
while (!traversal_queue.empty())
{
auto const current_tree_index = traversal_queue.front();
traversal_queue.pop();
// If we're at the bottom of the tree, we need to explore the
// element array
if (is_leaf(current_tree_index))
{
// Note: irange is [start,finish), so we need to +1 to make sure we visit the
// last
for (const auto current_child_index : child_indexes(current_tree_index))
{
const auto &current_edge = m_objects[current_child_index];
// we don't need to project the coordinates here,
// because we use the unprojected rectangle to test against
const Rectangle bbox{std::min(m_coordinate_list[current_edge.u].lon,
m_coordinate_list[current_edge.v].lon),
std::max(m_coordinate_list[current_edge.u].lon,
m_coordinate_list[current_edge.v].lon),
std::min(m_coordinate_list[current_edge.u].lat,
m_coordinate_list[current_edge.v].lat),
std::max(m_coordinate_list[current_edge.u].lat,
m_coordinate_list[current_edge.v].lat)};
// use the _unprojected_ input rectangle here
if (bbox.Intersects(search_rectangle))
{
results.push_back(current_edge);
}
}
}
else
{
BOOST_ASSERT(current_tree_index.level + 1 < m_tree_level_starts.size());
for (const auto child_index : child_indexes(current_tree_index))
{
const auto &child_rectangle =
m_search_tree[child_index].minimum_bounding_rectangle;
if (child_rectangle.Intersects(projected_rectangle))
{
traversal_queue.push(TreeIndex(
current_tree_index.level + 1,
child_index - m_tree_level_starts[current_tree_index.level + 1]));
}
}
}
}
SearchInBox(search_rectangle,
[&results](const auto &edge_data) { results.push_back(edge_data); });
return results;
}
@ -573,34 +512,34 @@ class StaticRTree
double maxDistanceMeters,
const FilterT filter) const
{
(void)filter;
auto projected_coordinate = web_mercator::fromWGS84(input_coordinate);
Coordinate fixed_projected_coordinate{projected_coordinate};
auto bbox = Rectangle::ExpandMeters(input_coordinate, maxDistanceMeters);
auto results_in_bbox = SearchInBox(bbox);
std::vector<CandidateSegment> results;
for (const auto &current_edge : results_in_bbox)
{
const auto projected_u = web_mercator::fromWGS84(m_coordinate_list[current_edge.u]);
const auto projected_v = web_mercator::fromWGS84(m_coordinate_list[current_edge.v]);
FloatCoordinate projected_nearest;
std::tie(std::ignore, projected_nearest) =
coordinate_calculation::projectPointOnSegment(
SearchInBox(
bbox,
[&results, &filter, fixed_projected_coordinate, this](const EdgeDataT &current_edge)
{
const auto projected_u = web_mercator::fromWGS84(m_coordinate_list[current_edge.u]);
const auto projected_v = web_mercator::fromWGS84(m_coordinate_list[current_edge.v]);
auto [_, projected_nearest] = coordinate_calculation::projectPointOnSegment(
projected_u, projected_v, fixed_projected_coordinate);
CandidateSegment current_candidate{projected_nearest, current_edge};
auto use_segment = filter(current_candidate);
if (!use_segment.first && !use_segment.second)
{
continue;
}
current_candidate.data.forward_segment_id.enabled &= use_segment.first;
current_candidate.data.reverse_segment_id.enabled &= use_segment.second;
CandidateSegment current_candidate{projected_nearest, current_edge};
auto use_segment = filter(current_candidate);
if (!use_segment.first && !use_segment.second)
{
return;
}
current_candidate.data.forward_segment_id.enabled &= use_segment.first;
current_candidate.data.reverse_segment_id.enabled &= use_segment.second;
results.push_back(current_candidate);
});
results.push_back(std::move(current_candidate));
}
return results;
}
@ -672,6 +611,73 @@ class StaticRTree
}
private:
template <typename Callback>
void SearchInBox(const Rectangle &search_rectangle, Callback &&callback) const
{
const Rectangle projected_rectangle{
search_rectangle.min_lon,
search_rectangle.max_lon,
toFixed(FloatLatitude{
web_mercator::latToY(toFloating(FixedLatitude(search_rectangle.min_lat)))}),
toFixed(FloatLatitude{
web_mercator::latToY(toFloating(FixedLatitude(search_rectangle.max_lat)))})};
std::queue<TreeIndex> traversal_queue;
traversal_queue.push(TreeIndex{});
while (!traversal_queue.empty())
{
auto const current_tree_index = traversal_queue.front();
traversal_queue.pop();
// If we're at the bottom of the tree, we need to explore the
// element array
if (is_leaf(current_tree_index))
{
// Note: irange is [start,finish), so we need to +1 to make sure we visit the
// last
for (const auto current_child_index : child_indexes(current_tree_index))
{
const auto &current_edge = m_objects[current_child_index];
// we don't need to project the coordinates here,
// because we use the unprojected rectangle to test against
const Rectangle bbox{std::min(m_coordinate_list[current_edge.u].lon,
m_coordinate_list[current_edge.v].lon),
std::max(m_coordinate_list[current_edge.u].lon,
m_coordinate_list[current_edge.v].lon),
std::min(m_coordinate_list[current_edge.u].lat,
m_coordinate_list[current_edge.v].lat),
std::max(m_coordinate_list[current_edge.u].lat,
m_coordinate_list[current_edge.v].lat)};
// use the _unprojected_ input rectangle here
if (bbox.Intersects(search_rectangle))
{
callback(current_edge);
}
}
}
else
{
BOOST_ASSERT(current_tree_index.level + 1 < m_tree_level_starts.size());
for (const auto child_index : child_indexes(current_tree_index))
{
const auto &child_rectangle =
m_search_tree[child_index].minimum_bounding_rectangle;
if (child_rectangle.Intersects(projected_rectangle))
{
traversal_queue.push(TreeIndex(
current_tree_index.level + 1,
child_index - m_tree_level_starts[current_tree_index.level + 1]));
}
}
}
}
}
/**
* Iterates over all the objects in a leaf node and inserts them into our
* search priority queue. The speed of this function is very much governed