move implementation of algorithms to own hpp in routing_algorithms folder
add changes to improve readability
This commit is contained in:
parent
d3ebd360b2
commit
f0d66ff0fb
@ -31,6 +31,9 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
#include "plugin_base.hpp"
|
||||
|
||||
#include "../algorithms/object_encoder.hpp"
|
||||
#include "../routing_algorithms/tsp_nearest_neighbour.hpp"
|
||||
#include "../routing_algorithms/tsp_farthest_insertion.hpp"
|
||||
#include "../routing_algorithms/tsp_brute_force.hpp"
|
||||
#include "../data_structures/query_edge.hpp"
|
||||
#include "../data_structures/search_engine.hpp"
|
||||
#include "../descriptors/descriptor_base.hpp"
|
||||
@ -44,7 +47,6 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
#include <osrm/json_container.hpp>
|
||||
|
||||
#include <cstdlib>
|
||||
|
||||
#include <algorithm>
|
||||
#include <memory>
|
||||
#include <unordered_map>
|
||||
@ -59,223 +61,6 @@ template <class DataFacadeT> class RoundTripPlugin final : public BasePlugin
|
||||
DataFacadeT *facade;
|
||||
std::unique_ptr<SearchEngine<DataFacadeT>> search_engine_ptr;
|
||||
|
||||
void FarthestInsertion(const RouteParameters & route_parameters,
|
||||
const PhantomNodeArray & phantom_node_vector,
|
||||
const std::vector<EdgeWeight> & dist_table,
|
||||
InternalRouteResult & min_route,
|
||||
std::vector<int> & min_loc_permutation) {
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// START FARTHEST INSERTION HERE
|
||||
// 1. start at a random round trip of 2 locations
|
||||
// 2. find the location that is the farthest away from the visited locations
|
||||
// 3. add the found location to the current round trip such that round trip is the shortest
|
||||
// 4. repeat 2-3 until all locations are visited
|
||||
// 5. DONE!
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
const auto number_of_locations = phantom_node_vector.size();
|
||||
std::list<int> current_trip;
|
||||
std::vector<bool> visited(number_of_locations, false);
|
||||
|
||||
// find two locations that have max distance
|
||||
auto max_dist = -1;
|
||||
int max_from = -1;
|
||||
int max_to = -1;
|
||||
|
||||
auto i = 0;
|
||||
for (auto it = dist_table.begin(); it != dist_table.end(); ++it) {
|
||||
if (*it > max_dist) {
|
||||
max_dist = *it;
|
||||
max_from = i / number_of_locations;
|
||||
max_to = i % number_of_locations;
|
||||
}
|
||||
++i;
|
||||
}
|
||||
|
||||
visited[max_from] = true;
|
||||
visited[max_to] = true;
|
||||
|
||||
// SimpleLogger().Write() << "Start with " << max_from << " " << max_to;
|
||||
|
||||
current_trip.push_back(max_from);
|
||||
current_trip.push_back(max_to);
|
||||
|
||||
for (int j = 2; j < number_of_locations; ++j) {
|
||||
auto max_min_dist = -1;
|
||||
int next_node = -1;
|
||||
auto min_max_insert = current_trip.begin();
|
||||
|
||||
// look for loc i that is the farthest away from all other visited locs
|
||||
for (int i = 0; i < number_of_locations; ++i) {
|
||||
if (!visited[i]) {
|
||||
// SimpleLogger().Write() << "- node " << i << " is not visited yet";
|
||||
|
||||
auto min_insert = std::numeric_limits<int>::max();
|
||||
auto min_to = current_trip.begin();
|
||||
|
||||
for (auto from_node = current_trip.begin(); from_node != current_trip.end(); ++from_node) {
|
||||
|
||||
auto to_node = std::next(from_node);
|
||||
if (std::next(from_node) == current_trip.end()) {
|
||||
to_node = current_trip.begin();
|
||||
}
|
||||
|
||||
auto dist_from = *(dist_table.begin() + (*from_node * number_of_locations) + i);
|
||||
auto dist_to = *(dist_table.begin() + (i * number_of_locations) + *to_node);
|
||||
auto trip_dist = dist_from + dist_to - *(dist_table.begin() + (*from_node * number_of_locations) + *to_node);
|
||||
|
||||
// SimpleLogger().Write() << " From " << *from_node << " to " << i << " to " << *to_node << " is " << trip_dist;
|
||||
|
||||
if (trip_dist < min_insert) {
|
||||
min_insert = trip_dist;
|
||||
min_to = to_node;
|
||||
}
|
||||
}
|
||||
if (min_insert > max_min_dist) {
|
||||
max_min_dist = min_insert;
|
||||
next_node = i;
|
||||
min_max_insert = min_to;
|
||||
}
|
||||
}
|
||||
}
|
||||
// SimpleLogger().Write() << "- Insert new node " << next_node;
|
||||
visited[next_node] = true;
|
||||
|
||||
current_trip.insert(min_max_insert, next_node);
|
||||
}
|
||||
|
||||
int perm = 0;
|
||||
for (auto it = current_trip.begin(); it != current_trip.end(); ++it) {
|
||||
// SimpleLogger().Write() << "- Visit location " << *it;
|
||||
|
||||
auto from_node = *it;
|
||||
auto to_node = *std::next(it);
|
||||
if (std::next(it) == current_trip.end()) {
|
||||
to_node = current_trip.front();
|
||||
}
|
||||
PhantomNodes viapoint;
|
||||
viapoint = PhantomNodes{phantom_node_vector[from_node][0], phantom_node_vector[to_node][0]};
|
||||
min_route.segment_end_coordinates.emplace_back(viapoint);
|
||||
min_loc_permutation[from_node] = perm;
|
||||
++perm;
|
||||
}
|
||||
search_engine_ptr->shortest_path(min_route.segment_end_coordinates, route_parameters.uturns, min_route);
|
||||
}
|
||||
|
||||
void NearestNeighbour(const RouteParameters & route_parameters,
|
||||
const PhantomNodeArray & phantom_node_vector,
|
||||
const std::vector<EdgeWeight> & dist_table,
|
||||
InternalRouteResult & min_route,
|
||||
std::vector<int> & min_loc_permutation) {
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// START GREEDY NEAREST NEIGHBOUR HERE
|
||||
// 1. grab a random location and mark as starting point
|
||||
// 2. find the nearest unvisited neighbour, set it as the current location and mark as visited
|
||||
// 3. repeat 2 until there is no unvisited location
|
||||
// 4. return route back to starting point
|
||||
// 5. compute route
|
||||
// 6. repeat 1-5 with different starting points and choose iteration with shortest trip
|
||||
// 7. DONE!
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
const auto number_of_locations = phantom_node_vector.size();
|
||||
min_route.shortest_path_length = std::numeric_limits<int>::max();
|
||||
|
||||
// is_lonely_island[i] indicates whether node i is a node that cannot be reached from other nodes
|
||||
// 1 means that node i is a lonely island
|
||||
// 0 means that it is not known for node i
|
||||
// -1 means that node i is not a lonely island but a reachable, connected node
|
||||
std::vector<int> is_lonely_island(number_of_locations, 0);
|
||||
int count_unreachables;
|
||||
|
||||
// ALWAYS START AT ANOTHER STARTING POINT
|
||||
for(int start_node = 0; start_node < number_of_locations; ++start_node)
|
||||
{
|
||||
|
||||
if (is_lonely_island[start_node] >= 0)
|
||||
{
|
||||
// if node is a lonely island it is an unsuitable node to start from and shall be skipped
|
||||
if (is_lonely_island[start_node])
|
||||
continue;
|
||||
count_unreachables = 0;
|
||||
auto start_dist_begin = dist_table.begin() + (start_node * number_of_locations);
|
||||
auto start_dist_end = dist_table.begin() + ((start_node + 1) * number_of_locations);
|
||||
for (auto it2 = start_dist_begin; it2 != start_dist_end; ++it2) {
|
||||
if (*it2 == 0 || *it2 == std::numeric_limits<int>::max()) {
|
||||
++count_unreachables;
|
||||
}
|
||||
}
|
||||
if (count_unreachables >= number_of_locations) {
|
||||
is_lonely_island[start_node] = 1;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
int curr_node = start_node;
|
||||
is_lonely_island[curr_node] = -1;
|
||||
InternalRouteResult raw_route;
|
||||
//TODO: Should we always use the same vector or does it not matter at all because of loop scope?
|
||||
std::vector<int> loc_permutation(number_of_locations, -1);
|
||||
loc_permutation[start_node] = 0;
|
||||
// visited[i] indicates whether node i was already visited by the salesman
|
||||
std::vector<bool> visited(number_of_locations, false);
|
||||
visited[start_node] = true;
|
||||
|
||||
PhantomNodes viapoint;
|
||||
// 3. REPEAT FOR EVERY UNVISITED NODE
|
||||
for(int via_point = 1; via_point < number_of_locations; ++via_point)
|
||||
{
|
||||
int min_dist = std::numeric_limits<int>::max();
|
||||
int min_id = -1;
|
||||
|
||||
// 2. FIND NEAREST NEIGHBOUR
|
||||
auto row_begin_iterator = dist_table.begin() + (curr_node * number_of_locations);
|
||||
auto row_end_iterator = dist_table.begin() + ((curr_node + 1) * number_of_locations);
|
||||
for (auto it = row_begin_iterator; it != row_end_iterator; ++it) {
|
||||
auto index = std::distance(row_begin_iterator, it);
|
||||
if (is_lonely_island[index] < 1 && !visited[index] && *it < min_dist)
|
||||
{
|
||||
min_dist = *it;
|
||||
min_id = index;
|
||||
}
|
||||
}
|
||||
// in case there was no unvisited and reachable node found, it means that all remaining (unvisited) nodes must be lonely islands
|
||||
if (min_id == -1)
|
||||
{
|
||||
for(int loc = 0; loc < visited.size(); ++loc) {
|
||||
if (!visited[loc]) {
|
||||
is_lonely_island[loc] = 1;
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
// set the nearest unvisited location as the next via_point
|
||||
else
|
||||
{
|
||||
is_lonely_island[min_id] = -1;
|
||||
loc_permutation[min_id] = via_point;
|
||||
visited[min_id] = true;
|
||||
viapoint = PhantomNodes{phantom_node_vector[curr_node][0], phantom_node_vector[min_id][0]};
|
||||
raw_route.segment_end_coordinates.emplace_back(viapoint);
|
||||
curr_node = min_id;
|
||||
}
|
||||
}
|
||||
|
||||
// 4. ROUTE BACK TO STARTING POINT
|
||||
viapoint = PhantomNodes{raw_route.segment_end_coordinates.back().target_phantom, phantom_node_vector[start_node][0]};
|
||||
raw_route.segment_end_coordinates.emplace_back(viapoint);
|
||||
|
||||
// 5. COMPUTE ROUTE
|
||||
search_engine_ptr->shortest_path(raw_route.segment_end_coordinates, route_parameters.uturns, raw_route);
|
||||
|
||||
// check round trip with this starting point is shorter than the shortest round trip found till now
|
||||
if (raw_route.shortest_path_length < min_route.shortest_path_length) {
|
||||
min_route = raw_route;
|
||||
min_loc_permutation = loc_permutation;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
explicit RoundTripPlugin(DataFacadeT *facade)
|
||||
: descriptor_string("trip"), facade(facade)
|
||||
@ -333,50 +118,70 @@ template <class DataFacadeT> class RoundTripPlugin final : public BasePlugin
|
||||
// compute TSP round trip
|
||||
InternalRouteResult min_route_nn;
|
||||
InternalRouteResult min_route_fi;
|
||||
InternalRouteResult min_route_bf;
|
||||
std::vector<int> min_loc_permutation_nn(phantom_node_vector.size(), -1);
|
||||
std::vector<int> min_loc_permutation_fi(phantom_node_vector.size(), -1);
|
||||
std::vector<int> min_loc_permutation_bf(phantom_node_vector.size(), -1);
|
||||
TIMER_STOP(tsp_pre);
|
||||
|
||||
|
||||
//######################### NEAREST NEIGHBOUR ###############################//
|
||||
TIMER_START(tsp_nn);
|
||||
NearestNeighbour(route_parameters, phantom_node_vector, *result_table, min_route_nn, min_loc_permutation_nn);
|
||||
osrm::tsp::NearestNeighbour(route_parameters, phantom_node_vector, *result_table, min_route_nn, min_loc_permutation_nn);
|
||||
search_engine_ptr->shortest_path(min_route_nn.segment_end_coordinates, route_parameters.uturns, min_route_nn);
|
||||
TIMER_STOP(tsp_nn);
|
||||
SimpleLogger().Write() << "Distance " << min_route_nn.shortest_path_length;
|
||||
SimpleLogger().Write() << "Time " << TIMER_MSEC(tsp_nn) + TIMER_MSEC(tsp_pre);
|
||||
|
||||
// std::unique_ptr<BaseDescriptor<DataFacadeT>> descriptor;
|
||||
// descriptor = osrm::make_unique<JSONDescriptor<DataFacadeT>>(facade);
|
||||
|
||||
// descriptor->SetConfig(route_parameters);
|
||||
// descriptor->Run(min_route_nn, json_result);
|
||||
|
||||
osrm::json::Array json_loc_permutation_nn;
|
||||
json_loc_permutation_nn.values.insert(json_loc_permutation_nn.values.end(), min_loc_permutation_nn.begin(), min_loc_permutation_nn.end());
|
||||
json_result.values["nn_loc_permutation"] = json_loc_permutation_nn;
|
||||
json_result.values["nn_distance"] = min_route_nn.shortest_path_length;
|
||||
json_result.values["nn_runtime"] = TIMER_MSEC(tsp_nn) + TIMER_MSEC(tsp_pre);
|
||||
|
||||
|
||||
//########################### BRUTE FORCE ####################################//
|
||||
if (route_parameters.coordinates.size() < 12) {
|
||||
TIMER_START(tsp_bf);
|
||||
osrm::tsp::BruteForce(route_parameters, phantom_node_vector, *result_table, min_route_bf, min_loc_permutation_bf);
|
||||
search_engine_ptr->shortest_path(min_route_bf.segment_end_coordinates, route_parameters.uturns, min_route_bf);
|
||||
TIMER_STOP(tsp_bf);
|
||||
SimpleLogger().Write() << "Distance " << min_route_bf.shortest_path_length;
|
||||
SimpleLogger().Write() << "Time " << TIMER_MSEC(tsp_bf) + TIMER_MSEC(tsp_pre);
|
||||
|
||||
osrm::json::Array json_loc_permutation_bf;
|
||||
json_loc_permutation_bf.values.insert(json_loc_permutation_bf.values.end(), min_loc_permutation_bf.begin(), min_loc_permutation_bf.end());
|
||||
json_result.values["bf_loc_permutation"] = json_loc_permutation_bf;
|
||||
json_result.values["bf_distance"] = min_route_bf.shortest_path_length;
|
||||
json_result.values["bf_runtime"] = TIMER_MSEC(tsp_bf) + TIMER_MSEC(tsp_pre);
|
||||
} else {
|
||||
json_result.values["bf_distance"] = -1;
|
||||
json_result.values["bf_runtime"] = -1;
|
||||
}
|
||||
|
||||
|
||||
//######################## FARTHEST INSERTION ###############################//
|
||||
TIMER_START(tsp_fi);
|
||||
FarthestInsertion(route_parameters, phantom_node_vector, *result_table, min_route_fi, min_loc_permutation_fi);
|
||||
osrm::tsp::FarthestInsertion(route_parameters, phantom_node_vector, *result_table, min_route_fi, min_loc_permutation_fi);
|
||||
search_engine_ptr->shortest_path(min_route_fi.segment_end_coordinates, route_parameters.uturns, min_route_fi);
|
||||
TIMER_STOP(tsp_fi);
|
||||
SimpleLogger().Write() << "Distance " << min_route_fi.shortest_path_length;
|
||||
SimpleLogger().Write() << "Time " << TIMER_MSEC(tsp_fi) + TIMER_MSEC(tsp_pre);
|
||||
|
||||
// return result to json
|
||||
std::unique_ptr<BaseDescriptor<DataFacadeT>> descriptor;
|
||||
descriptor = osrm::make_unique<JSONDescriptor<DataFacadeT>>(facade);
|
||||
|
||||
descriptor->SetConfig(route_parameters);
|
||||
descriptor->Run(min_route_fi, json_result);
|
||||
|
||||
osrm::json::Array json_loc_permutation_fi;
|
||||
json_loc_permutation_fi.values.insert(json_loc_permutation_fi.values.end(), min_loc_permutation_fi.begin(), min_loc_permutation_fi.end());
|
||||
json_result.values["fi_loc_permutation"] = json_loc_permutation_fi;
|
||||
json_result.values["fi_distance"] = min_route_fi.shortest_path_length;
|
||||
json_result.values["fi_runtime"] = TIMER_MSEC(tsp_fi) + TIMER_MSEC(tsp_pre);
|
||||
|
||||
// for (int i = 0; i < min_loc_permutation_fi.size(); ++i) {
|
||||
// SimpleLogger().Write() << min_loc_permutation_nn[i] << " " << min_loc_permutation_fi[i];
|
||||
// }
|
||||
// return geometry result to json
|
||||
std::unique_ptr<BaseDescriptor<DataFacadeT>> descriptor;
|
||||
descriptor = osrm::make_unique<JSONDescriptor<DataFacadeT>>(facade);
|
||||
|
||||
descriptor->SetConfig(route_parameters);
|
||||
descriptor->Run(min_route_fi, json_result);
|
||||
|
||||
|
||||
|
||||
return 200;
|
||||
}
|
||||
|
159
routing_algorithms/tsp_farthest_insertion.hpp
Normal file
159
routing_algorithms/tsp_farthest_insertion.hpp
Normal file
@ -0,0 +1,159 @@
|
||||
/*
|
||||
|
||||
Copyright (c) 2015, Project OSRM contributors
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without modification,
|
||||
are permitted provided that the following conditions are met:
|
||||
|
||||
Redistributions of source code must retain the above copyright notice, this list
|
||||
of conditions and the following disclaimer.
|
||||
Redistributions in binary form must reproduce the above copyright notice, this
|
||||
list of conditions and the following disclaimer in the documentation and/or
|
||||
other materials provided with the distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||||
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
|
||||
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||||
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
||||
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
*/
|
||||
|
||||
#ifndef TSP_FARTHEST_INSERTION_HPP
|
||||
#define TSP_FARTHEST_INSERTION_HPP
|
||||
|
||||
|
||||
#include "../data_structures/search_engine.hpp"
|
||||
#include "../util/string_util.hpp"
|
||||
|
||||
#include <osrm/json_container.hpp>
|
||||
|
||||
#include <cstdlib>
|
||||
|
||||
#include <algorithm>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <limits>
|
||||
|
||||
|
||||
namespace osrm
|
||||
{
|
||||
namespace tsp
|
||||
{
|
||||
|
||||
void FarthestInsertion(const RouteParameters & route_parameters,
|
||||
const PhantomNodeArray & phantom_node_vector,
|
||||
const std::vector<EdgeWeight> & dist_table,
|
||||
InternalRouteResult & min_route,
|
||||
std::vector<int> & min_loc_permutation) {
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// START FARTHEST INSERTION HERE
|
||||
// 1. start at a random round trip of 2 locations
|
||||
// 2. find the location that is the farthest away from the visited locations and whose insertion will make the round trip the longest
|
||||
// 3. add the found location to the current round trip such that round trip is the shortest
|
||||
// 4. repeat 2-3 until all locations are visited
|
||||
// 5. DONE!
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
const auto number_of_locations = phantom_node_vector.size();
|
||||
// list of the trip that will be found incrementally
|
||||
std::list<int> current_trip;
|
||||
// tracks which nodes have been already visited
|
||||
std::vector<bool> visited(number_of_locations, false);
|
||||
|
||||
|
||||
// find the pair of location with the biggest distance and make the pair the initial start trip
|
||||
const auto index = std::distance(dist_table.begin(), std::max_element(dist_table.begin(), dist_table.end()));
|
||||
const int max_from = index / number_of_locations;
|
||||
const int max_to = index % number_of_locations;
|
||||
|
||||
visited[max_from] = true;
|
||||
visited[max_to] = true;
|
||||
current_trip.push_back(max_from);
|
||||
current_trip.push_back(max_to);
|
||||
|
||||
// add all other nodes missing (two nodes are already in the initial start trip)
|
||||
for (int j = 2; j < number_of_locations; ++j) {
|
||||
auto shortest_max_tour = -1;
|
||||
int next_node = -1;
|
||||
std::list<int>::iterator min_max_insert;
|
||||
|
||||
// find unvisited loc i that is the farthest away from all other visited locs
|
||||
for (int i = 0; i < number_of_locations; ++i) {
|
||||
if (!visited[i]) {
|
||||
// longest_min_tour is the distance of the longest of all insertions with the minimal distance
|
||||
auto longest_min_tour = std::numeric_limits<int>::max();
|
||||
// following_loc is the location that comes after the location that is to be inserted
|
||||
std::list<int>::iterator following_loc;
|
||||
|
||||
// for all nodes in the current trip find the best insertion resulting in the shortest path
|
||||
for (auto from_node = current_trip.begin(); from_node != std::prev(current_trip.end()); ++from_node) {
|
||||
auto to_node = std::next(from_node);
|
||||
|
||||
auto dist_from = *(dist_table.begin() + (*from_node * number_of_locations) + i);
|
||||
auto dist_to = *(dist_table.begin() + (i * number_of_locations) + *to_node);
|
||||
auto trip_dist = dist_from + dist_to - *(dist_table.begin() + (*from_node * number_of_locations) + *to_node);
|
||||
|
||||
// from all possible insertions to the current trip, choose the longest of all minimal insertions
|
||||
if (trip_dist < longest_min_tour) {
|
||||
longest_min_tour = trip_dist;
|
||||
following_loc = to_node;
|
||||
}
|
||||
}
|
||||
{ // check insertion between last and first location too
|
||||
auto from_node = std::prev(current_trip.end());
|
||||
auto to_node = current_trip.begin();
|
||||
|
||||
auto dist_from = *(dist_table.begin() + (*from_node * number_of_locations) + i);
|
||||
auto dist_to = *(dist_table.begin() + (i * number_of_locations) + *to_node);
|
||||
auto trip_dist = dist_from + dist_to - *(dist_table.begin() + (*from_node * number_of_locations) + *to_node);
|
||||
if (trip_dist < longest_min_tour) {
|
||||
longest_min_tour = trip_dist;
|
||||
following_loc = to_node;
|
||||
}
|
||||
}
|
||||
|
||||
// add the location to the current trip such that it results in the shortest total tour
|
||||
if (longest_min_tour > shortest_max_tour) {
|
||||
shortest_max_tour = longest_min_tour;
|
||||
next_node = i;
|
||||
min_max_insert = following_loc;
|
||||
}
|
||||
}
|
||||
}
|
||||
// mark as visited and insert node
|
||||
visited[next_node] = true;
|
||||
current_trip.insert(min_max_insert, next_node);
|
||||
}
|
||||
|
||||
// given he final trip, compute total distance and return the route and location permutation
|
||||
PhantomNodes viapoint;
|
||||
int perm = 0;
|
||||
for (auto it = current_trip.begin(); it != std::prev(current_trip.end()); ++it) {
|
||||
auto from_node = *it;
|
||||
auto to_node = *std::next(it);
|
||||
|
||||
viapoint = PhantomNodes{phantom_node_vector[from_node][0], phantom_node_vector[to_node][0]};
|
||||
min_route.segment_end_coordinates.emplace_back(viapoint);
|
||||
|
||||
min_loc_permutation[from_node] = perm;
|
||||
++perm;
|
||||
}
|
||||
{ // check dist between last and first location too
|
||||
viapoint = PhantomNodes{phantom_node_vector[*std::prev(current_trip.end())][0], phantom_node_vector[current_trip.front()][0]};
|
||||
min_route.segment_end_coordinates.emplace_back(viapoint);
|
||||
min_loc_permutation[*std::prev(current_trip.end())] = perm;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
#endif // TSP_FARTHEST_INSERTION_HPP
|
168
routing_algorithms/tsp_nearest_neighbour.hpp
Normal file
168
routing_algorithms/tsp_nearest_neighbour.hpp
Normal file
@ -0,0 +1,168 @@
|
||||
/*
|
||||
|
||||
Copyright (c) 2015, Project OSRM contributors
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without modification,
|
||||
are permitted provided that the following conditions are met:
|
||||
|
||||
Redistributions of source code must retain the above copyright notice, this list
|
||||
of conditions and the following disclaimer.
|
||||
Redistributions in binary form must reproduce the above copyright notice, this
|
||||
list of conditions and the following disclaimer in the documentation and/or
|
||||
other materials provided with the distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||||
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
|
||||
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||||
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
||||
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
*/
|
||||
|
||||
#ifndef TSP_NEAREST_NEIGHBOUR_HPP
|
||||
#define TSP_NEAREST_NEIGHBOUR_HPP
|
||||
|
||||
|
||||
#include "../data_structures/search_engine.hpp"
|
||||
#include "../util/string_util.hpp"
|
||||
#include "../util/simple_logger.hpp"
|
||||
|
||||
#include <osrm/json_container.hpp>
|
||||
|
||||
#include <cstdlib>
|
||||
#include <algorithm>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <limits>
|
||||
|
||||
|
||||
|
||||
namespace osrm
|
||||
{
|
||||
namespace tsp
|
||||
{
|
||||
|
||||
void NearestNeighbour(const RouteParameters & route_parameters,
|
||||
const PhantomNodeArray & phantom_node_vector,
|
||||
const std::vector<EdgeWeight> & dist_table,
|
||||
InternalRouteResult & min_route,
|
||||
std::vector<int> & min_loc_permutation) {
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// START GREEDY NEAREST NEIGHBOUR HERE
|
||||
// 1. grab a random location and mark as starting point
|
||||
// 2. find the nearest unvisited neighbour, set it as the current location and mark as visited
|
||||
// 3. repeat 2 until there is no unvisited location
|
||||
// 4. return route back to starting point
|
||||
// 5. compute route
|
||||
// 6. repeat 1-5 with different starting points and choose iteration with shortest trip
|
||||
// 7. DONE!
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
const auto number_of_locations = phantom_node_vector.size();
|
||||
min_route.shortest_path_length = std::numeric_limits<int>::max();
|
||||
|
||||
// is_lonely_island[i] indicates whether node i is a node that cannot be reached from other nodes
|
||||
// 1 means that node i is a lonely island
|
||||
// 0 means that it is not known for node i
|
||||
// -1 means that node i is not a lonely island but a reachable, connected node
|
||||
std::vector<int> is_lonely_island(number_of_locations, 0);
|
||||
int count_unreachables;
|
||||
|
||||
// ALWAYS START AT ANOTHER STARTING POINT
|
||||
for(int start_node = 0; start_node < number_of_locations; ++start_node)
|
||||
{
|
||||
|
||||
if (is_lonely_island[start_node] >= 0)
|
||||
{
|
||||
// if node is a lonely island it is an unsuitable node to start from and shall be skipped
|
||||
if (is_lonely_island[start_node])
|
||||
continue;
|
||||
count_unreachables = 0;
|
||||
auto start_dist_begin = dist_table.begin() + (start_node * number_of_locations);
|
||||
auto start_dist_end = dist_table.begin() + ((start_node + 1) * number_of_locations);
|
||||
for (auto it2 = start_dist_begin; it2 != start_dist_end; ++it2) {
|
||||
if (*it2 == 0 || *it2 == std::numeric_limits<int>::max()) {
|
||||
++count_unreachables;
|
||||
}
|
||||
}
|
||||
if (count_unreachables >= number_of_locations) {
|
||||
is_lonely_island[start_node] = 1;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
int curr_node = start_node;
|
||||
is_lonely_island[curr_node] = -1;
|
||||
InternalRouteResult raw_route;
|
||||
//TODO: Should we always use the same vector or does it not matter at all because of loop scope?
|
||||
std::vector<int> loc_permutation(number_of_locations, -1);
|
||||
loc_permutation[start_node] = 0;
|
||||
// visited[i] indicates whether node i was already visited by the salesman
|
||||
std::vector<bool> visited(number_of_locations, false);
|
||||
visited[start_node] = true;
|
||||
|
||||
PhantomNodes viapoint;
|
||||
// 3. REPEAT FOR EVERY UNVISITED NODE
|
||||
int trip_dist = 0;
|
||||
for(int via_point = 1; via_point < number_of_locations; ++via_point)
|
||||
{
|
||||
int min_dist = std::numeric_limits<int>::max();
|
||||
int min_id = -1;
|
||||
|
||||
// 2. FIND NEAREST NEIGHBOUR
|
||||
auto row_begin_iterator = dist_table.begin() + (curr_node * number_of_locations);
|
||||
auto row_end_iterator = dist_table.begin() + ((curr_node + 1) * number_of_locations);
|
||||
for (auto it = row_begin_iterator; it != row_end_iterator; ++it) {
|
||||
auto index = std::distance(row_begin_iterator, it);
|
||||
if (is_lonely_island[index] < 1 && !visited[index] && *it < min_dist)
|
||||
{
|
||||
min_dist = *it;
|
||||
min_id = index;
|
||||
}
|
||||
}
|
||||
// in case there was no unvisited and reachable node found, it means that all remaining (unvisited) nodes must be lonely islands
|
||||
if (min_id == -1)
|
||||
{
|
||||
for(int loc = 0; loc < visited.size(); ++loc) {
|
||||
if (!visited[loc]) {
|
||||
is_lonely_island[loc] = 1;
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
// set the nearest unvisited location as the next via_point
|
||||
else
|
||||
{
|
||||
is_lonely_island[min_id] = -1;
|
||||
loc_permutation[min_id] = via_point;
|
||||
visited[min_id] = true;
|
||||
viapoint = PhantomNodes{phantom_node_vector[curr_node][0], phantom_node_vector[min_id][0]};
|
||||
raw_route.segment_end_coordinates.emplace_back(viapoint);
|
||||
trip_dist += min_dist;
|
||||
curr_node = min_id;
|
||||
}
|
||||
}
|
||||
|
||||
// 4. ROUTE BACK TO STARTING POINT
|
||||
viapoint = PhantomNodes{raw_route.segment_end_coordinates.back().target_phantom, phantom_node_vector[start_node][0]};
|
||||
raw_route.segment_end_coordinates.emplace_back(viapoint);
|
||||
|
||||
// check round trip with this starting point is shorter than the shortest round trip found till now
|
||||
if (trip_dist < min_route.shortest_path_length) {
|
||||
min_route = raw_route;
|
||||
min_route.shortest_path_length = trip_dist;
|
||||
//TODO: this gets copied right? fix this
|
||||
min_loc_permutation = loc_permutation;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
#endif // TSP_NEAREST_NEIGHBOUR_HPP
|
Loading…
Reference in New Issue
Block a user