post processing moved onto route-steps, looses sync with geometry segments

This commit is contained in:
Moritz Kobitzsch 2016-03-21 18:07:28 +01:00 committed by Patrick Niklaus
parent 1e753e98ce
commit e82bc20422
10 changed files with 240 additions and 166 deletions

View File

@ -72,7 +72,7 @@ class RouteAPI : public BaseAPI
}
util::json::Object MakeRoute(const std::vector<PhantomNodes> &segment_end_coordinates,
std::vector<std::vector<PathData>> unpacked_path_segments,
const std::vector<std::vector<PathData>> &unpacked_path_segments,
const std::vector<bool> &source_traversed_in_reverse,
const std::vector<bool> &target_traversed_in_reverse) const
{
@ -82,7 +82,6 @@ class RouteAPI : public BaseAPI
legs.reserve(number_of_legs);
leg_geometries.reserve(number_of_legs);
unpacked_path_segments = guidance::postProcess(std::move(unpacked_path_segments));
for (auto idx : util::irange(0UL, number_of_legs))
{
const auto &phantoms = segment_end_coordinates[idx];
@ -98,14 +97,42 @@ class RouteAPI : public BaseAPI
if (parameters.steps)
{
leg.steps = guidance::assembleSteps(
auto steps = guidance::assembleSteps(
BaseAPI::facade, path_data, leg_geometry, phantoms.source_phantom,
phantoms.target_phantom, reversed_source, reversed_target);
/* Perform step-based post-processing.
*
* Using post-processing on basis of route-steps for a single leg at a time
* comes at the cost that we cannot count the correct exit for roundabouts.
* We can only emit the exit nr/intersections up to/starting at a part of the leg.
* If a roundabout is not terminated in a leg, we will end up with a enter-roundabout
* and exit-roundabout-nr where the exit nr is out of sync with the previous enter.
*
* | S |
* * *
* ----* * ----
* T
* ----* * ----
* V * *
* | |
* | |
*
* Coming from S via V to T, we end up with the legs S->V and V->T. V-T will say to take
* the second exit, even though counting from S it would be the third.
* For S, we only emit `roundabout` without an exit number, showing that we enter a roundabout
* to find a via point.
* The same exit will be emitted, though, if we should start routing at S, making
* the overall response consistent.
*/
leg.steps = guidance::postProcess(std::move(steps));
}
leg_geometries.push_back(std::move(leg_geometry));
legs.push_back(std::move(leg));
}
auto route = guidance::assembleRoute(legs);
boost::optional<util::json::Value> json_overview;
if (parameters.overview != RouteParameters::OverviewType::False)

View File

@ -51,7 +51,7 @@ LegGeometry assembleGeometry(const DataFacadeT &facade,
current_distance +=
util::coordinate_calculation::haversineDistance(prev_coordinate, coordinate);
if (!isSilent(path_point.turn_instruction))
if (path_point.turn_instruction.type != extractor::guidance::TurnType::NoTurn)
{
geometry.segment_distances.push_back(current_distance);
geometry.segment_offsets.push_back(geometry.locations.size());

View File

@ -27,8 +27,7 @@ namespace detail
StepManeuver stepManeuverFromGeometry(extractor::guidance::TurnInstruction instruction,
const WaypointType waypoint_type,
const LegGeometry &leg_geometry,
const std::size_t segment_index,
const unsigned exit);
const std::size_t segment_index);
} // ns detail
template <typename DataFacadeT>
@ -78,7 +77,7 @@ std::vector<RouteStep> assembleSteps(const DataFacadeT &facade,
StepManeuver maneuver = detail::stepManeuverFromGeometry(
extractor::guidance::TurnInstruction{extractor::guidance::TurnType::NoTurn,
initial_modifier},
WaypointType::Depart, leg_geometry, segment_index, INVALID_EXIT_NR);
WaypointType::Depart, leg_geometry, segment_index);
// PathData saves the information we need of the segment _before_ the turn,
// but a RouteStep is with regard to the segment after the turn.
@ -89,7 +88,7 @@ std::vector<RouteStep> assembleSteps(const DataFacadeT &facade,
{
segment_duration += path_point.duration_until_turn;
if (path_point.turn_instruction != extractor::guidance::TurnInstruction::NO_TURN())
if (path_point.turn_instruction.type != extractor::guidance::TurnType::NoTurn)
{
BOOST_ASSERT(segment_duration >= 0);
const auto name = facade.GetNameForID(path_point.name_id);
@ -104,7 +103,7 @@ std::vector<RouteStep> assembleSteps(const DataFacadeT &facade,
leg_geometry.BackIndex(segment_index) + 1});
maneuver = detail::stepManeuverFromGeometry(path_point.turn_instruction,
WaypointType::None, leg_geometry,
segment_index, path_point.exit);
segment_index);
segment_index++;
segment_duration = 0;
}
@ -136,6 +135,7 @@ std::vector<RouteStep> assembleSteps(const DataFacadeT &facade,
extractor::guidance::TurnInstruction{
extractor::guidance::TurnType::NoTurn, initial_modifier},
WaypointType::Depart,
INVALID_EXIT_NR,
INVALID_EXIT_NR};
int duration = target_duration - source_duration;
BOOST_ASSERT(duration >= 0);
@ -174,6 +174,7 @@ std::vector<RouteStep> assembleSteps(const DataFacadeT &facade,
extractor::guidance::TurnInstruction{
extractor::guidance::TurnType::NoTurn, final_modifier},
WaypointType::Arrive,
INVALID_EXIT_NR,
INVALID_EXIT_NR},
leg_geometry.locations.size(),
leg_geometry.locations.size()});

View File

@ -1,7 +1,7 @@
#ifndef ENGINE_GUIDANCE_POST_PROCESSING_HPP
#define ENGINE_GUIDANCE_POST_PROCESSING_HPP
#include "engine/internal_route_result.hpp"
#include "engine/guidance/route_step.hpp"
#include <vector>
@ -12,7 +12,8 @@ namespace engine
namespace guidance
{
std::vector<std::vector<PathData>> postProcess(std::vector<std::vector<PathData>> path_data);
//passed as none-reference to modify in-place and move out again
std::vector<RouteStep> postProcess(std::vector<RouteStep> steps);
} // namespace guidance
} // namespace engine

View File

@ -28,6 +28,7 @@ struct StepManeuver
extractor::guidance::TurnInstruction instruction;
WaypointType waypoint_type;
unsigned exit;
unsigned intersection;
};
} // namespace guidance
} // namespace engine

View File

@ -29,8 +29,6 @@ struct PathData
extractor::guidance::TurnInstruction turn_instruction;
// travel mode of the street that leads to the turn
extractor::TravelMode travel_mode : 4;
// exit ID of highway exit, roundabout exit, intersection nr
unsigned exit;
};
struct InternalRouteResult

View File

@ -321,8 +321,7 @@ template <class DataFacadeT, class Derived> class BasicRoutingInterface
{
unpacked_path.push_back(
PathData{id_vector[i], name_index, weight_vector[i],
extractor::guidance::TurnInstruction::NO_TURN(), travel_mode,
INVALID_EXIT_NR});
extractor::guidance::TurnInstruction::NO_TURN(), travel_mode});
}
BOOST_ASSERT(unpacked_path.size() > 0);
unpacked_path.back().turn_instruction = turn_instruction;
@ -396,8 +395,7 @@ template <class DataFacadeT, class Derived> class BasicRoutingInterface
id_vector[i], phantom_node_pair.target_phantom.name_id, weight_vector[i],
extractor::guidance::TurnInstruction::NO_TURN(),
target_traversed_in_reverse ? phantom_node_pair.target_phantom.backward_travel_mode
: phantom_node_pair.target_phantom.forward_travel_mode,
INVALID_EXIT_NR});
: phantom_node_pair.target_phantom.forward_travel_mode});
}
if (is_local_path && unpacked_path.size() > 0)

View File

@ -149,6 +149,12 @@ util::json::Object makeStepManeuver(const guidance::StepManeuver &maneuver)
step_maneuver.values["bearing_after"] = maneuver.bearing_after;
if (maneuver.exit != 0)
step_maneuver.values["exit"] = maneuver.exit;
//TODO currently we need this to comply with the api.
//We should move this to an additional entry, the moment we
//actually compute the correct locations of the intersections
if (maneuver.intersection != 0 && maneuver.exit == 0 )
step_maneuver.values["exit"] = maneuver.intersection;
return step_maneuver;
}

View File

@ -15,12 +15,11 @@ namespace detail
StepManeuver stepManeuverFromGeometry(extractor::guidance::TurnInstruction instruction,
const WaypointType waypoint_type,
const LegGeometry &leg_geometry,
const std::size_t segment_index,
const unsigned exit)
const std::size_t segment_index)
{
auto turn_index = leg_geometry.BackIndex(segment_index);
BOOST_ASSERT(turn_index > 0);
BOOST_ASSERT(turn_index < leg_geometry.locations.size());
BOOST_ASSERT(turn_index + 1 < leg_geometry.locations.size());
// TODO chose a bigger look-a-head to smooth complex geometry
const auto pre_turn_coordinate = leg_geometry.locations[turn_index - 1];
@ -32,7 +31,13 @@ StepManeuver stepManeuverFromGeometry(extractor::guidance::TurnInstruction instr
const double post_turn_bearing =
util::coordinate_calculation::bearing(turn_coordinate, post_turn_coordinate);
return StepManeuver{turn_coordinate, pre_turn_bearing, post_turn_bearing, instruction, waypoint_type, exit};
return StepManeuver{turn_coordinate,
pre_turn_bearing,
post_turn_bearing,
instruction,
waypoint_type,
INVALID_EXIT_NR,
INVALID_EXIT_NR};
}
} // ns detail
} // ns engine

View File

@ -20,194 +20,231 @@ namespace guidance
namespace detail
{
bool canMergeTrivially(const PathData &destination, const PathData &source)
bool canMergeTrivially(const RouteStep &destination, const RouteStep &source)
{
return destination.exit == 0 && destination.name_id == source.name_id &&
destination.travel_mode == source.travel_mode && isSilent(source.turn_instruction);
return destination.maneuver.exit == 0 && destination.name_id == source.name_id &&
isSilent(source.maneuver.instruction);
}
PathData forwardInto(PathData destination, const PathData &source)
RouteStep forwardInto(RouteStep destination, const RouteStep &source)
{
// Merge a turn into a silent turn
// Overwrites turn instruction and increases exit NR
destination.exit = source.exit;
return destination;
}
PathData accumulateInto(PathData destination, const PathData &source)
{
// Merge a turn into a silent turn
// Overwrites turn instruction and increases exit NR
BOOST_ASSERT(canMergeTrivially(destination, source));
destination.exit = source.exit + 1;
return destination;
}
PathData mergeInto(PathData destination, const PathData &source)
{
if (source.turn_instruction == TurnInstruction::NO_TURN())
{
BOOST_ASSERT(canMergeTrivially(destination, source));
return detail::forwardInto(destination, source);
}
if (source.turn_instruction.type == TurnType::Suppressed)
{
return detail::forwardInto(destination, source);
}
if (source.turn_instruction.type == TurnType::StayOnRoundabout)
{
return detail::forwardInto(destination, source);
}
if (entersRoundabout(source.turn_instruction))
{
return detail::forwardInto(destination, source);
}
destination.duration += source.duration;
destination.distance += source.distance;
destination.geometry_begin = std::min( destination.geometry_begin, source.geometry_begin );
destination.geometry_end = std::max( destination.geometry_end, source.geometry_end );
return destination;
}
} // namespace detail
void print(const std::vector<std::vector<PathData>> &leg_data)
void print(const std::vector<RouteStep> &steps)
{
std::cout << "Path\n";
int legnr = 0;
for (const auto &leg : leg_data)
int segment = 0;
for (const auto &step : steps)
{
std::cout << "\tLeg: " << ++legnr << "\n";
int segment = 0;
for (const auto &data : leg)
{
const auto type = static_cast<int>(data.turn_instruction.type);
const auto modifier = static_cast<int>(data.turn_instruction.direction_modifier);
const auto type = static_cast<int>(step.maneuver.instruction.type);
const auto modifier = static_cast<int>(step.maneuver.instruction.direction_modifier);
std::cout << "\t\t[" << ++segment << "]: " << type << " " << modifier
<< " exit: " << data.exit << "\n";
}
std::cout << "\t[" << ++segment << "]: " << type << " " << modifier
<< " Duration: " << step.duration << " Distance: " << step.distance
<< " Geometry: " << step.geometry_begin << " " << step.geometry_end
<< " exit: " << step.maneuver.exit << " Intersection: " << step.maneuver.intersection << " name[" << step.name_id
<< "]: " << step.name << std::endl;
}
std::cout << std::endl;
}
std::vector<std::vector<PathData>> postProcess(std::vector<std::vector<PathData>> leg_data)
// Every Step Maneuver consists of the information until the turn.
// This list contains a set of instructions, called silent, which should
// not be part of the final output.
// They are required for maintenance purposes. We can calculate the number
// of exits to pass in a roundabout and the number of intersections
// that we come across.
std::vector<RouteStep> postProcess(std::vector<RouteStep> steps)
{
if (leg_data.empty())
return leg_data;
// the steps should always include the first/last step in form of a location
BOOST_ASSERT(steps.size() >= 2);
if (steps.size() == 2)
return steps;
#define PRINT_DEBUG 0
unsigned carry_exit = 0;
#if PRINT_DEBUG
std::cout << "[POSTPROCESSING ITERATION]" << std::endl;
std::cout << "Input\n";
print(leg_data);
print(steps);
#endif
// Count Street Exits forward
bool on_roundabout = false;
for (auto &path_data : leg_data)
// count the exits forward. if enter/exit roundabout happen both, no further treatment is
// required. We might end up with only one of them (e.g. starting within a roundabout)
// or having a via-point in the roundabout.
// In this case, exits are numbered from the start of the lag.
std::size_t last_valid_instruction = 0;
for (std::size_t step_index = 0; step_index < steps.size(); ++step_index)
{
if (not path_data.empty())
path_data[0].exit = carry_exit;
for (std::size_t data_index = 0; data_index + 1 < path_data.size(); ++data_index)
auto &step = steps[step_index];
const auto instruction = step.maneuver.instruction;
if (entersRoundabout(instruction))
{
if (entersRoundabout(path_data[data_index].turn_instruction))
last_valid_instruction = step_index;
// basic entry into a roundabout
// Special case handling, if an entry is directly tied to an exit
if (instruction.type == TurnType::EnterRotaryAtExit ||
instruction.type == TurnType::EnterRoundaboutAtExit)
{
step.maneuver.exit = 1;
// prevent futher special case handling of these two.
if (instruction.type == TurnType::EnterRotaryAtExit)
step.maneuver.instruction = TurnType::EnterRotary;
else
step.maneuver.instruction = TurnType::EnterRoundabout;
}
if (leavesRoundabout(instruction))
{
step.maneuver.exit = 1; // count the otherwise missing exit
if (instruction.type == TurnType::EnterRotaryAtExit)
step.maneuver.instruction = TurnType::EnterRotary;
else
step.maneuver.instruction = TurnType::EnterRoundabout;
}
else
{
path_data[data_index].exit += 1;
on_roundabout = true;
if (step_index + 1 < steps.size())
steps[step_index + 1].maneuver.exit = step.maneuver.exit;
}
}
else if (instruction.type == TurnType::StayOnRoundabout)
{
// increase the exit number we require passing the exit
step.maneuver.exit += 1;
if (step_index + 1 < steps.size())
steps[step_index + 1].maneuver.exit = step.maneuver.exit;
}
else if (leavesRoundabout(instruction))
{
// count the exit (0 based vs 1 based counting)
step.maneuver.exit += 1;
if (!on_roundabout)
{
// We reached a special case that requires the addition of a special route step in
// the beginning.
// We started in a roundabout, so to announce the exit, we move use the exit
// instruction and
// move it right to the beginning to make sure to immediately announce the exit.
BOOST_ASSERT(leavesRoundabout(steps[1].maneuver.instruction) ||
steps[1].maneuver.instruction.type == TurnType::StayOnRoundabout);
steps[0].geometry_end = 1;
steps[1] = detail::forwardInto(steps[1], steps[0]);
steps[0].duration = 0;
steps[0].distance = 0;
steps[1].maneuver.instruction.type =
step.maneuver.instruction.type == TurnType::ExitRotary
? TurnType::EnterRotary
: TurnType::EnterRoundabout;
//remember the now enter-instruction as valid
last_valid_instruction = 1;
}
if (isSilent(path_data[data_index].turn_instruction) &&
path_data[data_index].turn_instruction != TurnInstruction::NO_TURN())
// Normal exit from the roundabout, or exit from a previously fixed roundabout.
// Propagate the index back to the entering
// location and
// prepare the current silent set of instructions for removal.
if (step_index > 1)
{
path_data[data_index].exit += 1;
}
if (leavesRoundabout(path_data[data_index].turn_instruction))
{
if (!on_roundabout)
// The very first route-step is head, so we cannot iterate past that one
for (std::size_t propagation_index = step_index - 1; propagation_index > 0;
--propagation_index)
{
BOOST_ASSERT(leg_data[0][0].turn_instruction.type ==
TurnInstruction::NO_TURN());
if (path_data[data_index].turn_instruction.type == TurnType::ExitRoundabout)
leg_data[0][0].turn_instruction.type = TurnType::EnterRoundabout;
if (path_data[data_index].turn_instruction.type == TurnType::ExitRotary)
leg_data[0][0].turn_instruction.type = TurnType::EnterRotary;
path_data[data_index].exit += 1;
auto &propagation_step = steps[propagation_index];
propagation_step =
detail::forwardInto(propagation_step, steps[propagation_index + 1]);
if (entersRoundabout(propagation_step.maneuver.instruction))
{
// TODO at this point, we can remember the additional name for a rotary
// This requires some initial thought on the data format, though
propagation_step.maneuver.exit = step.maneuver.exit;
propagation_step.geometry_end = step.geometry_end;
propagation_step.name = step.name;
propagation_step.name_id = step.name_id;
break;
}
else
{
BOOST_ASSERT(propagation_step.maneuver.instruction.type =
TurnType::StayOnRoundabout);
propagation_step.maneuver.instruction =
TurnInstruction::NO_TURN(); // mark intermediate instructions invalid
}
}
on_roundabout = false;
}
if (path_data[data_index].turn_instruction.type == TurnType::EnterRoundaboutAtExit)
{
path_data[data_index].exit += 1;
path_data[data_index].turn_instruction.type = TurnType::EnterRoundabout;
}
else if (path_data[data_index].turn_instruction.type == TurnType::EnterRotaryAtExit)
{
path_data[data_index].exit += 1;
path_data[data_index].turn_instruction.type = TurnType::EnterRotary;
// remove exit
step.maneuver.instruction = TurnInstruction::NO_TURN();
}
on_roundabout = false;
}
else if (instruction.type == TurnType::Suppressed)
{
// count intersections. We cannot use exit, since intersections can follow directly after a roundabout
steps[last_valid_instruction].maneuver.intersection += 1;
if (isSilent(path_data[data_index].turn_instruction) ||
entersRoundabout(path_data[data_index].turn_instruction))
{
path_data[data_index + 1] =
detail::mergeInto(path_data[data_index + 1], path_data[data_index]);
}
carry_exit = path_data[data_index].exit;
steps[last_valid_instruction] =
detail::forwardInto(steps[last_valid_instruction], step);
step.maneuver.instruction = TurnInstruction::NO_TURN();
}
else if( !isSilent(instruction) )
{
// Remember the last non silent instruction
last_valid_instruction = step_index;
}
}
// unterminated roundabout
// Move backwards through the instructions until the start and remove the exit number
// A roundabout without exit translates to enter-roundabout.
if (on_roundabout)
{
for (std::size_t propagation_index = steps.size() - 1; propagation_index > 0;
--propagation_index)
{
auto &propagation_step = steps[propagation_index];
if (entersRoundabout(propagation_step.maneuver.instruction))
{
propagation_step.maneuver.exit = 0;
break;
}
else if (propagation_step.maneuver.instruction == TurnType::StayOnRoundabout)
{
propagation_step.maneuver.instruction =
TurnInstruction::NO_TURN(); // mark intermediate instructions invalid
}
}
}
// finally clean up the post-processed instructions.
// Remove all, now NO_TURN instructions for the set of steps
auto pos = steps.begin();
for (auto check = steps.begin(); check != steps.end(); ++check)
{
// keep valid instrucstions
if (check->maneuver.instruction != TurnInstruction::NO_TURN() ||
check->maneuver.waypoint_type != WaypointType::None)
{
*pos = *check;
++pos;
}
}
steps.erase(pos, steps.end());
#if PRINT_DEBUG
std::cout << "Merged\n";
print(leg_data);
print(steps);
#endif
on_roundabout = false;
// Move Roundabout exit numbers to front
for (auto rev_itr = leg_data.rbegin(); rev_itr != leg_data.rend(); ++rev_itr)
{
auto &path_data = *rev_itr;
for (std::size_t data_index = path_data.size(); data_index > 1; --data_index)
{
if (entersRoundabout(path_data[data_index - 1].turn_instruction))
{
if (!on_roundabout && !leavesRoundabout(path_data[data_index - 1].turn_instruction))
path_data[data_index - 1].exit = 0;
on_roundabout = false;
}
if (on_roundabout)
{
path_data[data_index - 2].exit = path_data[data_index - 1].exit;
}
if (leavesRoundabout(path_data[data_index - 1].turn_instruction) &&
!entersRoundabout(path_data[data_index - 1].turn_instruction))
{
path_data[data_index - 2].exit = path_data[data_index - 1].exit;
on_roundabout = true;
}
}
auto prev_leg = std::next(rev_itr);
if (!path_data.empty() && prev_leg != leg_data.rend())
{
if (on_roundabout && path_data[0].exit)
prev_leg->back().exit = path_data[0].exit;
}
}
#if PRINT_DEBUG
std::cout << "Move To Front\n";
print(leg_data);
#endif
// silence silent turns for good
for (auto &path_data : leg_data)
{
for (auto &data : path_data)
{
if (isSilent(data.turn_instruction) || (leavesRoundabout(data.turn_instruction) &&
!entersRoundabout(data.turn_instruction)))
{
data.turn_instruction = TurnInstruction::NO_TURN();
data.exit = 0;
}
}
}
return leg_data;
return steps;
}
} // namespace guidance