Refactor contract to be a stateless function

This commit is contained in:
Patrick Niklaus 2017-08-19 22:01:35 +00:00 committed by Patrick Niklaus
parent 421dc5b6ec
commit e23dc8977f
3 changed files with 591 additions and 627 deletions

View File

@ -1,354 +1,31 @@
#ifndef OSRM_CONTRACTOR_GRAPH_CONTRACTOR_HPP
#define OSRM_CONTRACTOR_GRAPH_CONTRACTOR_HPP
#include "contractor/contractor_dijkstra.hpp"
#include "contractor/contractor_graph.hpp"
#include "contractor/query_edge.hpp"
#include "util/deallocating_vector.hpp"
#include "util/integer_range.hpp"
#include "util/log.hpp"
#include "util/percent.hpp"
#include "util/timing_util.hpp"
#include "util/typedefs.hpp"
#include "util/xor_fast_hash.hpp"
#include <boost/assert.hpp>
#include <tbb/enumerable_thread_specific.h>
#include <tbb/parallel_for.h>
#include <tbb/parallel_sort.h>
#include <algorithm>
#include <limits>
#include <memory>
#include <tuple>
#include <vector>
#if USE_STXXL_LIBRARY
#include <stxxl/vector>
#endif
namespace osrm
{
namespace contractor
{
class GraphContractor
using LevelAndCore = std::tuple<std::vector<float>, std::vector<bool>>;
LevelAndCore contractGraph(ContractorGraph &graph,
std::vector<float> cached_node_levels,
std::vector<EdgeWeight> node_weights,
double core_factor = 1.0);
// Overload for contracting withcout cache
inline LevelAndCore contractGraph(ContractorGraph &graph,
std::vector<EdgeWeight> node_weights,
double core_factor = 1.0)
{
private:
#if USE_STXXL_LIBRARY
template <typename T> using ExternalVector = stxxl::vector<T>;
#else
template <typename T> using ExternalVector = std::vector<T>;
#endif
return contractGraph(graph, {}, std::move(node_weights), core_factor);
}
struct ContractorThreadData
{
ContractorDijkstra dijkstra;
std::vector<ContractorEdge> inserted_edges;
std::vector<NodeID> neighbours;
explicit ContractorThreadData(NodeID nodes) : dijkstra(nodes) {}
};
using NodeDepth = int;
struct ContractionStats
{
int edges_deleted_count;
int edges_added_count;
int original_edges_deleted_count;
int original_edges_added_count;
ContractionStats()
: edges_deleted_count(0), edges_added_count(0), original_edges_deleted_count(0),
original_edges_added_count(0)
{
}
};
struct RemainingNodeData
{
RemainingNodeData() : id(0), is_independent(false) {}
NodeID id : 31;
bool is_independent : 1;
};
struct ThreadDataContainer
{
explicit ThreadDataContainer(int number_of_nodes) : number_of_nodes(number_of_nodes) {}
inline ContractorThreadData *GetThreadData()
{
bool exists = false;
auto &ref = data.local(exists);
if (!exists)
{
// ref = std::make_shared<ContractorThreadData>(number_of_nodes);
ref = std::make_shared<ContractorThreadData>(4000);
}
return ref.get();
}
int number_of_nodes;
using EnumerableThreadData =
tbb::enumerable_thread_specific<std::shared_ptr<ContractorThreadData>>;
EnumerableThreadData data;
};
public:
GraphContractor(ContractorGraph &graph);
GraphContractor(ContractorGraph &graph,
std::vector<float> node_levels_,
std::vector<EdgeWeight> node_weights_);
void Run(double core_factor = 1.0);
std::vector<bool> GetCoreMarker();
std::vector<float> GetNodeLevels();
private:
void RenumberGraph(ThreadDataContainer &thread_data_list,
std::vector<RemainingNodeData> &remaining_nodes,
std::vector<float> &node_priorities);
float EvaluateNodePriority(ContractorThreadData *const data,
const NodeDepth node_depth,
const NodeID node);
template <bool RUNSIMULATION>
bool
ContractNode(ContractorThreadData *data, const NodeID node, ContractionStats *stats = nullptr)
{
auto &dijkstra = data->dijkstra;
std::size_t inserted_edges_size = data->inserted_edges.size();
std::vector<ContractorEdge> &inserted_edges = data->inserted_edges;
constexpr bool SHORTCUT_ARC = true;
constexpr bool FORWARD_DIRECTION_ENABLED = true;
constexpr bool FORWARD_DIRECTION_DISABLED = false;
constexpr bool REVERSE_DIRECTION_ENABLED = true;
constexpr bool REVERSE_DIRECTION_DISABLED = false;
for (auto in_edge : graph.GetAdjacentEdgeRange(node))
{
const ContractorEdgeData &in_data = graph.GetEdgeData(in_edge);
const NodeID source = graph.GetTarget(in_edge);
if (source == node)
continue;
if (RUNSIMULATION)
{
BOOST_ASSERT(stats != nullptr);
++stats->edges_deleted_count;
stats->original_edges_deleted_count += in_data.originalEdges;
}
if (!in_data.backward)
{
continue;
}
dijkstra.Clear();
dijkstra.Insert(source, 0, ContractorHeapData{});
EdgeWeight max_weight = 0;
unsigned number_of_targets = 0;
for (auto out_edge : graph.GetAdjacentEdgeRange(node))
{
const ContractorEdgeData &out_data = graph.GetEdgeData(out_edge);
if (!out_data.forward)
{
continue;
}
const NodeID target = graph.GetTarget(out_edge);
if (node == target)
{
continue;
}
const EdgeWeight path_weight = in_data.weight + out_data.weight;
if (target == source)
{
if (path_weight < node_weights[node])
{
if (RUNSIMULATION)
{
// make sure to prune better, but keep inserting this loop if it should
// still be the best
// CAREFUL: This only works due to the independent node-setting. This
// guarantees that source is not connected to another node that is
// contracted
node_weights[source] = path_weight + 1;
BOOST_ASSERT(stats != nullptr);
stats->edges_added_count += 2;
stats->original_edges_added_count +=
2 * (out_data.originalEdges + in_data.originalEdges);
}
else
{
// CAREFUL: This only works due to the independent node-setting. This
// guarantees that source is not connected to another node that is
// contracted
node_weights[source] = path_weight; // make sure to prune better
inserted_edges.emplace_back(source,
target,
path_weight,
in_data.duration + out_data.duration,
out_data.originalEdges +
in_data.originalEdges,
node,
SHORTCUT_ARC,
FORWARD_DIRECTION_ENABLED,
REVERSE_DIRECTION_DISABLED);
inserted_edges.emplace_back(target,
source,
path_weight,
in_data.duration + out_data.duration,
out_data.originalEdges +
in_data.originalEdges,
node,
SHORTCUT_ARC,
FORWARD_DIRECTION_DISABLED,
REVERSE_DIRECTION_ENABLED);
}
}
continue;
}
max_weight = std::max(max_weight, path_weight);
if (!dijkstra.WasInserted(target))
{
dijkstra.Insert(target, INVALID_EDGE_WEIGHT, ContractorHeapData{0, true});
++number_of_targets;
}
}
if (RUNSIMULATION)
{
const int constexpr SIMULATION_SEARCH_SPACE_SIZE = 1000;
dijkstra.Run(
number_of_targets, SIMULATION_SEARCH_SPACE_SIZE, max_weight, node, graph);
}
else
{
const int constexpr FULL_SEARCH_SPACE_SIZE = 2000;
dijkstra.Run(number_of_targets, FULL_SEARCH_SPACE_SIZE, max_weight, node, graph);
}
for (auto out_edge : graph.GetAdjacentEdgeRange(node))
{
const ContractorEdgeData &out_data = graph.GetEdgeData(out_edge);
if (!out_data.forward)
{
continue;
}
const NodeID target = graph.GetTarget(out_edge);
if (target == node)
continue;
const EdgeWeight path_weight = in_data.weight + out_data.weight;
const EdgeWeight weight = dijkstra.GetKey(target);
if (path_weight < weight)
{
if (RUNSIMULATION)
{
BOOST_ASSERT(stats != nullptr);
stats->edges_added_count += 2;
stats->original_edges_added_count +=
2 * (out_data.originalEdges + in_data.originalEdges);
}
else
{
inserted_edges.emplace_back(source,
target,
path_weight,
in_data.duration + out_data.duration,
out_data.originalEdges + in_data.originalEdges,
node,
SHORTCUT_ARC,
FORWARD_DIRECTION_ENABLED,
REVERSE_DIRECTION_DISABLED);
inserted_edges.emplace_back(target,
source,
path_weight,
in_data.duration + out_data.duration,
out_data.originalEdges + in_data.originalEdges,
node,
SHORTCUT_ARC,
FORWARD_DIRECTION_DISABLED,
REVERSE_DIRECTION_ENABLED);
}
}
}
}
// Check For One-Way Streets to decide on the creation of self-loops
if (!RUNSIMULATION)
{
std::size_t iend = inserted_edges.size();
for (std::size_t i = inserted_edges_size; i < iend; ++i)
{
bool found = false;
for (std::size_t other = i + 1; other < iend; ++other)
{
if (inserted_edges[other].source != inserted_edges[i].source)
{
continue;
}
if (inserted_edges[other].target != inserted_edges[i].target)
{
continue;
}
if (inserted_edges[other].data.weight != inserted_edges[i].data.weight)
{
continue;
}
if (inserted_edges[other].data.shortcut != inserted_edges[i].data.shortcut)
{
continue;
}
inserted_edges[other].data.forward |= inserted_edges[i].data.forward;
inserted_edges[other].data.backward |= inserted_edges[i].data.backward;
found = true;
break;
}
if (!found)
{
inserted_edges[inserted_edges_size++] = inserted_edges[i];
}
}
inserted_edges.resize(inserted_edges_size);
}
return true;
}
void DeleteIncomingEdges(ContractorThreadData *data, const NodeID node);
bool UpdateNodeNeighbours(std::vector<float> &priorities,
std::vector<NodeDepth> &node_depth,
ContractorThreadData *const data,
const NodeID node);
bool IsNodeIndependent(const std::vector<float> &priorities,
ContractorThreadData *const data,
NodeID node) const;
// This bias function takes up 22 assembly instructions in total on X86
bool Bias(const NodeID a, const NodeID b) const;
ContractorGraph &graph;
std::vector<NodeID> orig_node_id_from_new_node_id_map;
std::vector<float> node_levels;
// A list of weights for every node in the graph.
// The weight represents the cost for a u-turn on the segment in the base-graph in addition to
// its traversal.
// During contraction, self-loops are checked against this node weight to ensure that necessary
// self-loops are added.
std::vector<EdgeWeight> node_weights;
std::vector<bool> is_core_node;
util::XORFastHash<> fast_hash;
};
} // namespace contractor
} // namespace osrm

View File

@ -73,14 +73,12 @@ int Contractor::Run()
util::DeallocatingVector<QueryEdge> contracted_edge_list;
{ // own scope to not keep the contractor around
auto contractor_graph = toContractorGraph(max_edge_id+1, std::move(edge_based_edge_list));
GraphContractor graph_contractor(contractor_graph,
std::tie(node_levels, is_core_node) = contractGraph(contractor_graph,
std::move(node_levels),
std::move(node_weights));
graph_contractor.Run(config.core_factor);
std::move(node_weights),
config.core_factor);
contracted_edge_list = toEdges<QueryEdge>(std::move(contractor_graph));
is_core_node = graph_contractor.GetCoreMarker();
node_levels = graph_contractor.GetNodeLevels();
}
TIMER_STOP(contraction);

View File

@ -1,71 +1,360 @@
#include "contractor/graph_contractor.hpp"
#include "contractor/contractor_dijkstra.hpp"
#include "contractor/contractor_graph.hpp"
#include "contractor/query_edge.hpp"
#include "util/deallocating_vector.hpp"
#include "util/integer_range.hpp"
#include "util/log.hpp"
#include "util/percent.hpp"
#include "util/timing_util.hpp"
#include "util/typedefs.hpp"
#include "util/xor_fast_hash.hpp"
#include <boost/assert.hpp>
#include <tbb/enumerable_thread_specific.h>
#include <tbb/parallel_for.h>
#include <tbb/parallel_sort.h>
#include <algorithm>
#include <limits>
#include <memory>
#include <vector>
namespace osrm
{
namespace contractor
{
GraphContractor::GraphContractor(ContractorGraph &graph)
: GraphContractor(graph, {}, {})
namespace
{
struct ContractorThreadData
{
ContractorDijkstra dijkstra;
std::vector<ContractorEdge> inserted_edges;
std::vector<NodeID> neighbours;
explicit ContractorThreadData(NodeID nodes) : dijkstra(nodes) {}
};
struct ContractorNodeData
{
using NodeDepth = int;
using NodePriority = float;
using NodeLevel = float;
ContractorNodeData(std::size_t number_of_nodes,
std::vector<NodePriority> priorities_,
std::vector<EdgeWeight> weights_)
: is_core(number_of_nodes, true), priorities(std::move(priorities_)),
weights(std::move(weights_))
{
// no cached priorities
if (priorities.empty())
{
depths.resize(number_of_nodes, 0);
levels.resize(number_of_nodes);
priorities.resize(number_of_nodes);
}
}
void Renumber(const std::vector<NodeID> &old_to_new)
{
util::inplacePermutation(priorities.begin(), priorities.end(), old_to_new);
util::inplacePermutation(weights.begin(), weights.end(), old_to_new);
util::inplacePermutation(levels.begin(), levels.end(), old_to_new);
util::inplacePermutation(is_core.begin(), is_core.end(), old_to_new);
util::inplacePermutation(depths.begin(), depths.end(), old_to_new);
}
std::vector<bool> is_core;
std::vector<NodePriority> priorities;
std::vector<EdgeWeight> weights;
std::vector<NodeDepth> depths;
std::vector<NodeLevel> levels;
};
struct ContractionStats
{
int edges_deleted_count;
int edges_added_count;
int original_edges_deleted_count;
int original_edges_added_count;
ContractionStats()
: edges_deleted_count(0), edges_added_count(0), original_edges_deleted_count(0),
original_edges_added_count(0)
{
}
};
struct RemainingNodeData
{
RemainingNodeData() : id(0), is_independent(false) {}
NodeID id : 31;
bool is_independent : 1;
};
struct ThreadDataContainer
{
explicit ThreadDataContainer(int number_of_nodes) : number_of_nodes(number_of_nodes) {}
inline ContractorThreadData *GetThreadData()
{
bool exists = false;
auto &ref = data.local(exists);
if (!exists)
{
// ref = std::make_shared<ContractorThreadData>(number_of_nodes);
ref = std::make_shared<ContractorThreadData>(4000);
}
return ref.get();
}
int number_of_nodes;
using EnumerableThreadData =
tbb::enumerable_thread_specific<std::shared_ptr<ContractorThreadData>>;
EnumerableThreadData data;
};
// This bias function takes up 22 assembly instructions in total on X86
inline bool Bias(const util::XORFastHash<> &fast_hash, const NodeID a, const NodeID b)
{
const unsigned short hasha = fast_hash(a);
const unsigned short hashb = fast_hash(b);
// The compiler optimizes that to conditional register flags but without branching
// statements!
if (hasha != hashb)
{
return hasha < hashb;
}
return a < b;
}
GraphContractor::GraphContractor(ContractorGraph &graph,
std::vector<float> node_levels_,
std::vector<EdgeWeight> node_weights_)
: graph(graph), orig_node_id_from_new_node_id_map(graph.GetNumberOfNodes()),
node_levels(std::move(node_levels_)), node_weights(std::move(node_weights_))
template <bool RUNSIMULATION>
void ContractNode(ContractorThreadData *data,
const ContractorGraph &graph,
const NodeID node,
std::vector<EdgeWeight> &node_weights,
ContractionStats *stats = nullptr)
{
// Fill the map with an identiy mapping
std::iota(
orig_node_id_from_new_node_id_map.begin(), orig_node_id_from_new_node_id_map.end(), 0);
auto &dijkstra = data->dijkstra;
std::size_t inserted_edges_size = data->inserted_edges.size();
std::vector<ContractorEdge> &inserted_edges = data->inserted_edges;
constexpr bool SHORTCUT_ARC = true;
constexpr bool FORWARD_DIRECTION_ENABLED = true;
constexpr bool FORWARD_DIRECTION_DISABLED = false;
constexpr bool REVERSE_DIRECTION_ENABLED = true;
constexpr bool REVERSE_DIRECTION_DISABLED = false;
for (auto in_edge : graph.GetAdjacentEdgeRange(node))
{
const ContractorEdgeData &in_data = graph.GetEdgeData(in_edge);
const NodeID source = graph.GetTarget(in_edge);
if (source == node)
continue;
if (RUNSIMULATION)
{
BOOST_ASSERT(stats != nullptr);
++stats->edges_deleted_count;
stats->original_edges_deleted_count += in_data.originalEdges;
}
if (!in_data.backward)
{
continue;
}
dijkstra.Clear();
dijkstra.Insert(source, 0, ContractorHeapData{});
EdgeWeight max_weight = 0;
unsigned number_of_targets = 0;
for (auto out_edge : graph.GetAdjacentEdgeRange(node))
{
const ContractorEdgeData &out_data = graph.GetEdgeData(out_edge);
if (!out_data.forward)
{
continue;
}
const NodeID target = graph.GetTarget(out_edge);
if (node == target)
{
continue;
}
const EdgeWeight path_weight = in_data.weight + out_data.weight;
if (target == source)
{
if (path_weight < node_weights[node])
{
if (RUNSIMULATION)
{
// make sure to prune better, but keep inserting this loop if it should
// still be the best
// CAREFUL: This only works due to the independent node-setting. This
// guarantees that source is not connected to another node that is
// contracted
node_weights[source] = path_weight + 1;
BOOST_ASSERT(stats != nullptr);
stats->edges_added_count += 2;
stats->original_edges_added_count +=
2 * (out_data.originalEdges + in_data.originalEdges);
}
else
{
// CAREFUL: This only works due to the independent node-setting. This
// guarantees that source is not connected to another node that is
// contracted
node_weights[source] = path_weight; // make sure to prune better
inserted_edges.emplace_back(source,
target,
path_weight,
in_data.duration + out_data.duration,
out_data.originalEdges + in_data.originalEdges,
node,
SHORTCUT_ARC,
FORWARD_DIRECTION_ENABLED,
REVERSE_DIRECTION_DISABLED);
inserted_edges.emplace_back(target,
source,
path_weight,
in_data.duration + out_data.duration,
out_data.originalEdges + in_data.originalEdges,
node,
SHORTCUT_ARC,
FORWARD_DIRECTION_DISABLED,
REVERSE_DIRECTION_ENABLED);
}
}
continue;
}
max_weight = std::max(max_weight, path_weight);
if (!dijkstra.WasInserted(target))
{
dijkstra.Insert(target, INVALID_EDGE_WEIGHT, ContractorHeapData{0, true});
++number_of_targets;
}
}
if (RUNSIMULATION)
{
const int constexpr SIMULATION_SEARCH_SPACE_SIZE = 1000;
dijkstra.Run(number_of_targets, SIMULATION_SEARCH_SPACE_SIZE, max_weight, node, graph);
}
else
{
const int constexpr FULL_SEARCH_SPACE_SIZE = 2000;
dijkstra.Run(number_of_targets, FULL_SEARCH_SPACE_SIZE, max_weight, node, graph);
}
for (auto out_edge : graph.GetAdjacentEdgeRange(node))
{
const ContractorEdgeData &out_data = graph.GetEdgeData(out_edge);
if (!out_data.forward)
{
continue;
}
const NodeID target = graph.GetTarget(out_edge);
if (target == node)
continue;
const EdgeWeight path_weight = in_data.weight + out_data.weight;
const EdgeWeight weight = dijkstra.GetKey(target);
if (path_weight < weight)
{
if (RUNSIMULATION)
{
BOOST_ASSERT(stats != nullptr);
stats->edges_added_count += 2;
stats->original_edges_added_count +=
2 * (out_data.originalEdges + in_data.originalEdges);
}
else
{
inserted_edges.emplace_back(source,
target,
path_weight,
in_data.duration + out_data.duration,
out_data.originalEdges + in_data.originalEdges,
node,
SHORTCUT_ARC,
FORWARD_DIRECTION_ENABLED,
REVERSE_DIRECTION_DISABLED);
inserted_edges.emplace_back(target,
source,
path_weight,
in_data.duration + out_data.duration,
out_data.originalEdges + in_data.originalEdges,
node,
SHORTCUT_ARC,
FORWARD_DIRECTION_DISABLED,
REVERSE_DIRECTION_ENABLED);
}
}
}
}
// Check For One-Way Streets to decide on the creation of self-loops
if (!RUNSIMULATION)
{
std::size_t iend = inserted_edges.size();
for (std::size_t i = inserted_edges_size; i < iend; ++i)
{
bool found = false;
for (std::size_t other = i + 1; other < iend; ++other)
{
if (inserted_edges[other].source != inserted_edges[i].source)
{
continue;
}
if (inserted_edges[other].target != inserted_edges[i].target)
{
continue;
}
if (inserted_edges[other].data.weight != inserted_edges[i].data.weight)
{
continue;
}
if (inserted_edges[other].data.shortcut != inserted_edges[i].data.shortcut)
{
continue;
}
inserted_edges[other].data.forward |= inserted_edges[i].data.forward;
inserted_edges[other].data.backward |= inserted_edges[i].data.backward;
found = true;
break;
}
if (!found)
{
inserted_edges[inserted_edges_size++] = inserted_edges[i];
}
}
inserted_edges.resize(inserted_edges_size);
}
}
/* Reorder nodes for better locality during contraction */
void GraphContractor::RenumberGraph(ThreadDataContainer &thread_data_list,
std::vector<RemainingNodeData> &remaining_nodes,
std::vector<float> &node_priorities)
void ContractNode(ContractorThreadData *data,
const ContractorGraph &graph,
const NodeID node,
std::vector<EdgeWeight> &node_weights)
{
// Delete old heap data to free memory that we need for the coming operations
thread_data_list.data.clear();
std::vector<NodeID> new_node_id_from_current_node_id(graph.GetNumberOfNodes(), SPECIAL_NODEID);
ContractNode<false>(data, graph, node, node_weights, nullptr);
}
// we need to make a copy here because we are going to modify it
auto to_orig = orig_node_id_from_new_node_id_map;
auto new_node_id = 0;
// All remaining nodes get the low IDs
for (auto &remaining : remaining_nodes)
{
auto id = new_node_id++;
new_node_id_from_current_node_id[remaining.id] = id;
orig_node_id_from_new_node_id_map[id] = to_orig[remaining.id];
remaining.id = id;
}
// Already contracted nodes get the high IDs
for (const auto current_id : util::irange<std::size_t>(0, graph.GetNumberOfNodes()))
{
if (new_node_id_from_current_node_id[current_id] == SPECIAL_NODEID)
{
auto id = new_node_id++;
new_node_id_from_current_node_id[current_id] = id;
orig_node_id_from_new_node_id_map[id] = to_orig[current_id];
}
}
BOOST_ASSERT(new_node_id == graph.GetNumberOfNodes());
util::inplacePermutation(
node_priorities.begin(), node_priorities.end(), new_node_id_from_current_node_id);
util::inplacePermutation(
node_weights.begin(), node_weights.end(), new_node_id_from_current_node_id);
util::inplacePermutation(
node_levels.begin(), node_levels.end(), new_node_id_from_current_node_id);
util::inplacePermutation(
is_core_node.begin(), is_core_node.end(), new_node_id_from_current_node_id);
graph.Renumber(new_node_id_from_current_node_id);
ContractionStats SimulateNodeContraction(ContractorThreadData *data,
const ContractorGraph &graph,
const NodeID node,
std::vector<EdgeWeight> &node_weights)
{
ContractionStats stats;
ContractNode<true>(data, graph, node, node_weights, &stats);
return stats;
}
void RenumberGraph(ContractorGraph &graph, const std::vector<NodeID> &old_to_new)
{
graph.Renumber(old_to_new);
// Renumber all shortcut node IDs
for (const auto node : util::irange<NodeID>(0, graph.GetNumberOfNodes()))
{
@ -74,14 +363,198 @@ void GraphContractor::RenumberGraph(ThreadDataContainer &thread_data_list,
auto &data = graph.GetEdgeData(edge);
if (data.shortcut)
{
data.id = new_node_id_from_current_node_id[data.id];
data.id = old_to_new[data.id];
}
}
}
}
void GraphContractor::Run(double core_factor)
/* Reorder nodes for better locality during contraction */
void RenumberData(std::vector<RemainingNodeData> &remaining_nodes,
std::vector<NodeID> &new_to_old_node_id,
ContractorNodeData &node_data,
ContractorGraph &graph)
{
std::vector<NodeID> current_to_new_node_id(graph.GetNumberOfNodes(), SPECIAL_NODEID);
// we need to make a copy here because we are going to modify it
auto to_orig = new_to_old_node_id;
auto new_node_id = 0;
// All remaining nodes get the low IDs
for (auto &remaining : remaining_nodes)
{
auto id = new_node_id++;
current_to_new_node_id[remaining.id] = id;
new_to_old_node_id[id] = to_orig[remaining.id];
remaining.id = id;
}
// Already contracted nodes get the high IDs
for (const auto current_id : util::irange<std::size_t>(0, graph.GetNumberOfNodes()))
{
if (current_to_new_node_id[current_id] == SPECIAL_NODEID)
{
auto id = new_node_id++;
current_to_new_node_id[current_id] = id;
new_to_old_node_id[id] = to_orig[current_id];
}
}
BOOST_ASSERT(new_node_id == graph.GetNumberOfNodes());
node_data.Renumber(current_to_new_node_id);
RenumberGraph(graph, current_to_new_node_id);
}
float EvaluateNodePriority(const ContractionStats &stats, const ContractorNodeData::NodeDepth node_depth)
{
// Result will contain the priority
float result;
if (0 == (stats.edges_deleted_count * stats.original_edges_deleted_count))
{
result = 1.f * node_depth;
}
else
{
result =
2.f * (((float)stats.edges_added_count) / stats.edges_deleted_count) +
4.f * (((float)stats.original_edges_added_count) / stats.original_edges_deleted_count) +
1.f * node_depth;
}
BOOST_ASSERT(result >= 0);
return result;
}
void DeleteIncomingEdges(ContractorThreadData *data, ContractorGraph &graph, const NodeID node)
{
std::vector<NodeID> &neighbours = data->neighbours;
neighbours.clear();
// find all neighbours
for (auto e : graph.GetAdjacentEdgeRange(node))
{
const NodeID u = graph.GetTarget(e);
if (u != node)
{
neighbours.push_back(u);
}
}
// eliminate duplicate entries ( forward + backward edges )
std::sort(neighbours.begin(), neighbours.end());
neighbours.resize(std::unique(neighbours.begin(), neighbours.end()) - neighbours.begin());
for (const auto i : util::irange<std::size_t>(0, neighbours.size()))
{
graph.DeleteEdgesTo(neighbours[i], node);
}
}
bool UpdateNodeNeighbours(ContractorNodeData &node_data,
ContractorThreadData *data,
const ContractorGraph &graph,
const NodeID node)
{
std::vector<NodeID> &neighbours = data->neighbours;
neighbours.clear();
// find all neighbours
for (auto e : graph.GetAdjacentEdgeRange(node))
{
const NodeID u = graph.GetTarget(e);
if (u == node)
{
continue;
}
neighbours.push_back(u);
node_data.depths[u] = std::max(node_data.depths[node] + 1, node_data.depths[u]);
}
// eliminate duplicate entries ( forward + backward edges )
std::sort(neighbours.begin(), neighbours.end());
neighbours.resize(std::unique(neighbours.begin(), neighbours.end()) - neighbours.begin());
// re-evaluate priorities of neighboring nodes
for (const NodeID u : neighbours)
{
node_data.priorities[u] = EvaluateNodePriority(
SimulateNodeContraction(data, graph, u, node_data.weights), node_data.depths[u]);
}
return true;
}
bool IsNodeIndependent(const util::XORFastHash<> &hash,
const std::vector<float> &priorities,
const ContractorGraph &graph,
ContractorThreadData *const data,
const NodeID node)
{
const float priority = priorities[node];
std::vector<NodeID> &neighbours = data->neighbours;
neighbours.clear();
for (auto e : graph.GetAdjacentEdgeRange(node))
{
const NodeID target = graph.GetTarget(e);
if (node == target)
{
continue;
}
const float target_priority = priorities[target];
BOOST_ASSERT(target_priority >= 0);
// found a neighbour with lower priority?
if (priority > target_priority)
{
return false;
}
// tie breaking
if (std::abs(priority - target_priority) < std::numeric_limits<float>::epsilon() &&
Bias(hash, node, target))
{
return false;
}
neighbours.push_back(target);
}
std::sort(neighbours.begin(), neighbours.end());
neighbours.resize(std::unique(neighbours.begin(), neighbours.end()) - neighbours.begin());
// examine all neighbours that are at most 2 hops away
for (const NodeID u : neighbours)
{
for (auto e : graph.GetAdjacentEdgeRange(u))
{
const NodeID target = graph.GetTarget(e);
if (node == target)
{
continue;
}
const float target_priority = priorities[target];
BOOST_ASSERT(target_priority >= 0);
// found a neighbour with lower priority?
if (priority > target_priority)
{
return false;
}
// tie breaking
if (std::abs(priority - target_priority) < std::numeric_limits<float>::epsilon() &&
Bias(hash, node, target))
{
return false;
}
}
}
return true;
}
}
LevelAndCore contractGraph(ContractorGraph &graph,
std::vector<float> cached_node_levels_,
std::vector<EdgeWeight> node_weights_,
double core_factor)
{
util::XORFastHash<> fast_hash;
// for the preperation we can use a big grain size, which is much faster (probably cache)
const constexpr size_t InitGrainSize = 100000;
const constexpr size_t PQGrainSize = 100000;
@ -98,55 +571,49 @@ void GraphContractor::Run(double core_factor)
ThreadDataContainer thread_data_list(number_of_nodes);
NodeID number_of_contracted_nodes = 0;
std::vector<NodeDepth> node_depth;
std::vector<float> node_priorities;
is_core_node.resize(number_of_nodes, false);
std::vector<NodeID> new_to_old_node_id(number_of_nodes);
// Fill the map with an identiy mapping
std::iota(new_to_old_node_id.begin(), new_to_old_node_id.end(), 0);
bool use_cached_node_priorities = !cached_node_levels_.empty();
ContractorNodeData node_data{
graph.GetNumberOfNodes(), std::move(cached_node_levels_), std::move(node_weights_)};
std::vector<RemainingNodeData> remaining_nodes(number_of_nodes);
// initialize priorities in parallel
tbb::parallel_for(tbb::blocked_range<NodeID>(0, number_of_nodes, InitGrainSize),
[this, &remaining_nodes](const tbb::blocked_range<NodeID> &range) {
[&remaining_nodes](const tbb::blocked_range<NodeID> &range) {
for (auto x = range.begin(), end = range.end(); x != end; ++x)
{
remaining_nodes[x].id = x;
}
});
bool use_cached_node_priorities = !node_levels.empty();
if (use_cached_node_priorities)
if (!use_cached_node_priorities)
{
util::UnbufferedLog log;
log << "using cached node priorities ...";
node_priorities.swap(node_levels);
log << "ok";
}
else
{
node_depth.resize(number_of_nodes, 0);
node_priorities.resize(number_of_nodes);
node_levels.resize(number_of_nodes);
util::UnbufferedLog log;
log << "initializing elimination PQ ...";
tbb::parallel_for(tbb::blocked_range<NodeID>(0, number_of_nodes, PQGrainSize),
[this, &node_priorities, &node_depth, &thread_data_list](
const tbb::blocked_range<NodeID> &range) {
log << "initializing node priorities...";
tbb::parallel_for(
tbb::blocked_range<NodeID>(0, number_of_nodes, PQGrainSize),
[&node_data, &graph, &thread_data_list](const tbb::blocked_range<NodeID> &range) {
ContractorThreadData *data = thread_data_list.GetThreadData();
for (auto x = range.begin(), end = range.end(); x != end; ++x)
{
node_priorities[x] =
this->EvaluateNodePriority(data, node_depth[x], x);
node_data.priorities[x] = EvaluateNodePriority(
SimulateNodeContraction(data, graph, x, node_data.weights),
node_data.depths[x]);
}
});
log << "ok";
log << " ok.";
}
BOOST_ASSERT(node_priorities.size() == number_of_nodes);
util::Log() << "preprocessing " << number_of_nodes << " nodes ...";
util::Log() << "preprocessing " << number_of_nodes << " nodes...";
util::UnbufferedLog log;
util::Percent p(log, number_of_nodes);
const util::XORFastHash<> hash;
unsigned current_level = 0;
std::size_t next_renumbering = number_of_nodes * 0.65 * core_factor;
while (remaining_nodes.size() > 1 &&
@ -154,7 +621,7 @@ void GraphContractor::Run(double core_factor)
{
if (number_of_contracted_nodes > next_renumbering)
{
RenumberGraph(thread_data_list, remaining_nodes, node_priorities);
RenumberData(remaining_nodes, new_to_old_node_id, node_data, graph);
log << "[renumbered]";
// only one renumbering for now
next_renumbering = number_of_nodes;
@ -162,15 +629,14 @@ void GraphContractor::Run(double core_factor)
tbb::parallel_for(
tbb::blocked_range<NodeID>(0, remaining_nodes.size(), IndependentGrainSize),
[this, &node_priorities, &remaining_nodes, &thread_data_list](
const tbb::blocked_range<NodeID> &range) {
[&](const auto &range) {
ContractorThreadData *data = thread_data_list.GetThreadData();
// determine independent node set
for (auto i = range.begin(), end = range.end(); i != end; ++i)
{
const NodeID node = remaining_nodes[i].id;
remaining_nodes[i].is_independent =
this->IsNodeIndependent(node_priorities, data, node);
IsNodeIndependent(hash, node_data.priorities, graph, data, node);
}
});
@ -189,11 +655,11 @@ void GraphContractor::Run(double core_factor)
tbb::parallel_for(
tbb::blocked_range<NodeID>(
begin_independent_nodes_idx, end_independent_nodes_idx, ContractGrainSize),
[this, remaining_nodes, current_level](const tbb::blocked_range<NodeID> &range) {
[&](const auto &range) {
for (auto position = range.begin(), end = range.end(); position != end;
++position)
{
node_levels[remaining_nodes[position].id] = current_level;
node_data.levels[remaining_nodes[position].id] = current_level;
}
});
}
@ -202,30 +668,31 @@ void GraphContractor::Run(double core_factor)
tbb::parallel_for(
tbb::blocked_range<NodeID>(
begin_independent_nodes_idx, end_independent_nodes_idx, ContractGrainSize),
[this, &remaining_nodes, &thread_data_list](const tbb::blocked_range<NodeID> &range) {
[&](const auto &range) {
ContractorThreadData *data = thread_data_list.GetThreadData();
for (auto position = range.begin(), end = range.end(); position != end; ++position)
{
const NodeID x = remaining_nodes[position].id;
this->ContractNode<false>(data, x);
const NodeID node = remaining_nodes[position].id;
node_data.is_core[node] = false;
ContractNode(data, graph, node, node_data.weights);
}
});
tbb::parallel_for(
tbb::blocked_range<NodeID>(
begin_independent_nodes_idx, end_independent_nodes_idx, DeleteGrainSize),
[this, &remaining_nodes, &thread_data_list](const tbb::blocked_range<NodeID> &range) {
[&](const auto &range) {
ContractorThreadData *data = thread_data_list.GetThreadData();
for (auto position = range.begin(), end = range.end(); position != end; ++position)
{
const NodeID x = remaining_nodes[position].id;
this->DeleteIncomingEdges(data, x);
const NodeID node = remaining_nodes[position].id;
DeleteIncomingEdges(data, graph, node);
}
});
// make sure we really sort each block
tbb::parallel_for(thread_data_list.data.range(),
[&](const ThreadDataContainer::EnumerableThreadData::range_type &range) {
[&](const auto &range) {
for (auto &data : range)
tbb::parallel_sort(data->inserted_edges.begin(),
data->inserted_edges.end());
@ -262,14 +729,14 @@ void GraphContractor::Run(double core_factor)
tbb::parallel_for(
tbb::blocked_range<NodeID>(
begin_independent_nodes_idx, end_independent_nodes_idx, NeighboursGrainSize),
[this, &node_priorities, &remaining_nodes, &node_depth, &thread_data_list](
const tbb::blocked_range<NodeID> &range) {
[&](
const auto &range) {
ContractorThreadData *data = thread_data_list.GetThreadData();
for (auto position = range.begin(), end = range.end(); position != end;
++position)
{
NodeID x = remaining_nodes[position].id;
this->UpdateNodeNeighbours(node_priorities, node_depth, data, x);
NodeID node = remaining_nodes[position].id;
UpdateNodeNeighbours(node_data, data, graph, node);
}
});
}
@ -282,199 +749,21 @@ void GraphContractor::Run(double core_factor)
p.PrintStatus(number_of_contracted_nodes);
++current_level;
}
if (remaining_nodes.size() > 2)
{
tbb::parallel_for(tbb::blocked_range<NodeID>(0, remaining_nodes.size(), InitGrainSize),
[this, &remaining_nodes](const tbb::blocked_range<NodeID> &range) {
for (auto x = range.begin(), end = range.end(); x != end; ++x)
{
is_core_node[remaining_nodes[x].id] = true;
}
});
}
else
{
// in this case we don't need core markers since we fully contracted
// the graph
is_core_node.clear();
}
log << "\n";
util::Log() << "[core] " << remaining_nodes.size() << " nodes " << graph.GetNumberOfEdges()
<< " edges.";
util::inplacePermutation(node_levels.begin(), node_levels.end(), orig_node_id_from_new_node_id_map);
util::inplacePermutation(is_core_node.begin(), is_core_node.end(), orig_node_id_from_new_node_id_map);
graph.Renumber(orig_node_id_from_new_node_id_map);
node_data.Renumber(new_to_old_node_id);
RenumberGraph(graph, new_to_old_node_id);
thread_data_list.data.clear();
}
// Can only be called once because it invalides the marker
std::vector<bool> GraphContractor::GetCoreMarker() { return std::move(is_core_node); }
// Can only be called once because it invalides the node levels
std::vector<float> GraphContractor::GetNodeLevels() { return std::move(node_levels); }
float GraphContractor::EvaluateNodePriority(ContractorThreadData *const data,
const NodeDepth node_depth,
const NodeID node)
{
ContractionStats stats;
// perform simulated contraction
ContractNode<true>(data, node, &stats);
// Result will contain the priority
float result;
if (0 == (stats.edges_deleted_count * stats.original_edges_deleted_count))
if (remaining_nodes.size() <= 2)
{
result = 1.f * node_depth;
}
else
{
result =
2.f * (((float)stats.edges_added_count) / stats.edges_deleted_count) +
4.f * (((float)stats.original_edges_added_count) / stats.original_edges_deleted_count) +
1.f * node_depth;
}
BOOST_ASSERT(result >= 0);
return result;
}
void GraphContractor::DeleteIncomingEdges(ContractorThreadData *data, const NodeID node)
{
std::vector<NodeID> &neighbours = data->neighbours;
neighbours.clear();
// find all neighbours
for (auto e : graph.GetAdjacentEdgeRange(node))
{
const NodeID u = graph.GetTarget(e);
if (u != node)
{
neighbours.push_back(u);
}
}
// eliminate duplicate entries ( forward + backward edges )
std::sort(neighbours.begin(), neighbours.end());
neighbours.resize(std::unique(neighbours.begin(), neighbours.end()) - neighbours.begin());
for (const auto i : util::irange<std::size_t>(0, neighbours.size()))
{
graph.DeleteEdgesTo(neighbours[i], node);
}
}
bool GraphContractor::UpdateNodeNeighbours(std::vector<float> &priorities,
std::vector<NodeDepth> &node_depth,
ContractorThreadData *const data,
const NodeID node)
{
std::vector<NodeID> &neighbours = data->neighbours;
neighbours.clear();
// find all neighbours
for (auto e : graph.GetAdjacentEdgeRange(node))
{
const NodeID u = graph.GetTarget(e);
if (u == node)
{
continue;
}
neighbours.push_back(u);
node_depth[u] = std::max(node_depth[node] + 1, node_depth[u]);
}
// eliminate duplicate entries ( forward + backward edges )
std::sort(neighbours.begin(), neighbours.end());
neighbours.resize(std::unique(neighbours.begin(), neighbours.end()) - neighbours.begin());
// re-evaluate priorities of neighboring nodes
for (const NodeID u : neighbours)
{
priorities[u] = EvaluateNodePriority(data, node_depth[u], u);
}
return true;
}
bool GraphContractor::IsNodeIndependent(const std::vector<float> &priorities,
ContractorThreadData *const data,
NodeID node) const
{
const float priority = priorities[node];
std::vector<NodeID> &neighbours = data->neighbours;
neighbours.clear();
for (auto e : graph.GetAdjacentEdgeRange(node))
{
const NodeID target = graph.GetTarget(e);
if (node == target)
{
continue;
}
const float target_priority = priorities[target];
BOOST_ASSERT(target_priority >= 0);
// found a neighbour with lower priority?
if (priority > target_priority)
{
return false;
}
// tie breaking
if (std::abs(priority - target_priority) < std::numeric_limits<float>::epsilon() &&
Bias(node, target))
{
return false;
}
neighbours.push_back(target);
// in this case we don't need core markers since we fully contracted the graph
node_data.is_core.clear();
}
std::sort(neighbours.begin(), neighbours.end());
neighbours.resize(std::unique(neighbours.begin(), neighbours.end()) - neighbours.begin());
// examine all neighbours that are at most 2 hops away
for (const NodeID u : neighbours)
{
for (auto e : graph.GetAdjacentEdgeRange(u))
{
const NodeID target = graph.GetTarget(e);
if (node == target)
{
continue;
}
const float target_priority = priorities[target];
BOOST_ASSERT(target_priority >= 0);
// found a neighbour with lower priority?
if (priority > target_priority)
{
return false;
}
// tie breaking
if (std::abs(priority - target_priority) < std::numeric_limits<float>::epsilon() &&
Bias(node, target))
{
return false;
}
}
}
return true;
}
// This bias function takes up 22 assembly instructions in total on X86
bool GraphContractor::Bias(const NodeID a, const NodeID b) const
{
const unsigned short hasha = fast_hash(a);
const unsigned short hashb = fast_hash(b);
// The compiler optimizes that to conditional register flags but without branching
// statements!
if (hasha != hashb)
{
return hasha < hashb;
}
return a < b;
return LevelAndCore {std::move(node_data.levels), std::move(node_data.is_core)};
}
} // namespace contractor