Add storage for cell weights used in the MLD algorithm

This commit is contained in:
Patrick Niklaus 2017-02-09 15:43:53 +00:00 committed by Patrick Niklaus
parent b2b5e2bb4d
commit e06ffabf21
4 changed files with 736 additions and 0 deletions

View File

@ -0,0 +1,321 @@
#ifndef OSRM_UTIL_CELL_STORAGE_HPP
#define OSRM_UTIL_CELL_STORAGE_HPP
#include "util/assert.hpp"
#include "util/for_each_range.hpp"
#include "util/multi_level_partition.hpp"
#include "util/typedefs.hpp"
#include <boost/range/iterator_range.hpp>
#include <tbb/parallel_sort.h>
#include <algorithm>
#include <numeric>
#include <utility>
#include <vector>
namespace osrm
{
namespace util
{
class CellStorage
{
public:
using WeightOffset = std::uint32_t;
using BoundaryOffset = std::uint32_t;
using BoundarySize = std::uint32_t;
using SourceIndex = std::uint32_t;
using DestinationIndex = std::uint32_t;
static constexpr auto INVALID_WEIGHT_OFFSET = std::numeric_limits<WeightOffset>::max();
static constexpr auto INVALID_BOUNDARY_OFFSET = std::numeric_limits<BoundaryOffset>::max();
private:
struct CellData
{
WeightOffset weight_offset = INVALID_WEIGHT_OFFSET;
BoundaryOffset source_boundary_offset = INVALID_BOUNDARY_OFFSET;
BoundaryOffset destination_boundary_offset = INVALID_BOUNDARY_OFFSET;
BoundarySize num_source_nodes = 0;
BoundarySize num_destination_nodes = 0;
};
// Implementation of the cell view. We need a template parameter here
// because we need to derive a read-only and read-write view from this.
template <typename WeightValueT> class CellImpl
{
private:
using WeightPtrT = WeightValueT *;
using WeightRefT = WeightValueT &;
BoundarySize num_source_nodes;
BoundarySize num_destination_nodes;
WeightPtrT const weights;
const NodeID *const source_boundary;
const NodeID *const destination_boundary;
using RowIterator = WeightPtrT;
// Possibly replace with
// http://www.boost.org/doc/libs/1_55_0/libs/range/doc/html/range/reference/adaptors/reference/strided.html
class ColumnIterator : public std::iterator<std::random_access_iterator_tag, EdgeWeight>
{
public:
explicit ColumnIterator(WeightPtrT begin, std::size_t row_length)
: current(begin), stride(row_length)
{
BOOST_ASSERT(begin != nullptr);
}
WeightRefT operator*() const { return *current; }
ColumnIterator &operator++()
{
current += stride;
return *this;
}
ColumnIterator &operator+=(int amount)
{
current += stride * amount;
return *this;
}
bool operator==(const ColumnIterator &other) const { return current == other.current; }
bool operator!=(const ColumnIterator &other) const { return current != other.current; }
std::int64_t operator-(const ColumnIterator &other) const
{
return (current - other.current) / stride;
}
private:
WeightPtrT current;
std::size_t stride;
};
std::size_t GetRow(NodeID node) const
{
auto iter = std::find(source_boundary, source_boundary + num_source_nodes, node);
BOOST_ASSERT(iter != source_boundary + num_source_nodes);
return iter - source_boundary;
}
std::size_t GetColumn(NodeID node) const
{
auto iter =
std::find(destination_boundary, destination_boundary + num_destination_nodes, node);
BOOST_ASSERT(iter != destination_boundary + num_destination_nodes);
return iter - destination_boundary;
}
public:
auto GetOutWeight(NodeID node) const
{
auto row = GetRow(node);
auto begin = weights + num_destination_nodes * row;
auto end = begin + num_destination_nodes;
return boost::make_iterator_range(begin, end);
}
auto GetInWeight(NodeID node) const
{
auto column = GetColumn(node);
auto begin = ColumnIterator{weights + column, num_destination_nodes};
auto end = ColumnIterator{weights + column + num_source_nodes * num_destination_nodes,
num_destination_nodes};
return boost::make_iterator_range(begin, end);
}
auto GetSourceNodes() const
{
return boost::make_iterator_range(source_boundary, source_boundary + num_source_nodes);
}
auto GetDestinationNodes() const
{
return boost::make_iterator_range(destination_boundary,
destination_boundary + num_destination_nodes);
}
CellImpl(const CellData &data,
WeightPtrT const all_weight,
const NodeID *const all_sources,
const NodeID *const all_destinations)
: num_source_nodes{data.num_source_nodes},
num_destination_nodes{data.num_destination_nodes},
weights{all_weight + data.weight_offset},
source_boundary{all_sources + data.source_boundary_offset},
destination_boundary{all_destinations + data.destination_boundary_offset}
{
BOOST_ASSERT(all_weight != nullptr);
BOOST_ASSERT(all_sources != nullptr);
BOOST_ASSERT(all_destinations != nullptr);
}
};
std::size_t LevelIDToIndex(LevelID level) const { return level - 1; }
public:
using Cell = CellImpl<EdgeWeight>;
using ConstCell = CellImpl<const EdgeWeight>;
template <typename GraphT>
CellStorage(const MultiLevelPartition &partition, const GraphT &base_graph)
{
// pre-allocate storge for CellData so we can have random access to it by cell id
unsigned number_of_cells = 0;
for (LevelID level = 1u; level < partition.GetNumberOfLevels(); ++level)
{
level_to_cell_offset.push_back(number_of_cells);
number_of_cells += partition.GetNumberOfCells(level);
}
level_to_cell_offset.push_back(number_of_cells);
cells.resize(number_of_cells);
std::vector<std::pair<CellID, NodeID>> level_source_boundary;
std::vector<std::pair<CellID, NodeID>> level_destination_boundary;
for (LevelID level = 1u; level < partition.GetNumberOfLevels(); ++level)
{
auto level_offset = level_to_cell_offset[LevelIDToIndex(level)];
level_source_boundary.clear();
level_destination_boundary.clear();
for (auto node = 0u; node < base_graph.GetNumberOfNodes(); ++node)
{
const CellID cell_id = partition.GetCell(level, node);
bool is_source_node = false;
bool is_destination_node = false;
bool is_boundary_node = false;
for (auto edge : base_graph.GetAdjacentEdgeRange(node))
{
auto other = base_graph.GetTarget(edge);
const auto &data = base_graph.GetEdgeData(edge);
is_boundary_node |= partition.GetCell(level, other) != cell_id;
is_source_node |= partition.GetCell(level, other) == cell_id && data.forward;
is_destination_node |=
partition.GetCell(level, other) == cell_id && data.backward;
}
if (is_boundary_node)
{
if (is_source_node)
level_source_boundary.emplace_back(cell_id, node);
if (is_destination_node)
level_destination_boundary.emplace_back(cell_id, node);
// a partition that contains boundary nodes that have no arcs going into
// the cells or coming out of it is invalid. These nodes should be reassigned
// to a different cell.
BOOST_ASSERT_MSG(
is_source_node || is_destination_node,
"Node needs to either have incoming or outgoing edges in cell");
}
}
tbb::parallel_sort(level_source_boundary.begin(), level_source_boundary.end());
tbb::parallel_sort(level_destination_boundary.begin(),
level_destination_boundary.end());
const auto insert_cell_boundary = [this, level_offset](auto &boundary,
auto set_num_nodes_fn,
auto set_boundary_offset_fn,
auto begin,
auto end) {
BOOST_ASSERT(std::distance(begin, end) > 0);
const auto cell_id = begin->first;
BOOST_ASSERT(level_offset + cell_id < cells.size());
auto &cell = cells[level_offset + cell_id];
set_num_nodes_fn(cell, std::distance(begin, end));
set_boundary_offset_fn(cell, boundary.size());
std::transform(begin,
end,
std::back_inserter(boundary),
[](const auto &cell_and_node) { return cell_and_node.second; });
};
util::for_each_range(
level_source_boundary.begin(),
level_source_boundary.end(),
[this, insert_cell_boundary](auto begin, auto end) {
insert_cell_boundary(
source_boundary,
[](auto &cell, auto value) { cell.num_source_nodes = value; },
[](auto &cell, auto value) { cell.source_boundary_offset = value; },
begin,
end);
});
util::for_each_range(
level_destination_boundary.begin(),
level_destination_boundary.end(),
[this, insert_cell_boundary](auto begin, auto end) {
insert_cell_boundary(
destination_boundary,
[](auto &cell, auto value) { cell.num_destination_nodes = value; },
[](auto &cell, auto value) { cell.destination_boundary_offset = value; },
begin,
end);
});
}
// Set weight offsets and calculate total storage size
WeightOffset weight_offset = 0;
for (auto &cell : cells)
{
cell.weight_offset = weight_offset;
weight_offset += cell.num_source_nodes * cell.num_destination_nodes;
}
weights.resize(weight_offset + 1, INVALID_EDGE_WEIGHT);
}
CellStorage(std::vector<EdgeWeight> weights_,
std::vector<NodeID> source_boundary_,
std::vector<NodeID> destination_boundary_,
std::vector<CellData> cells_,
std::vector<std::size_t> level_to_cell_offset_)
: weights(std::move(weights_)), source_boundary(std::move(source_boundary_)),
destination_boundary(std::move(destination_boundary_)), cells(std::move(cells_)),
level_to_cell_offset(std::move(level_to_cell_offset_))
{
}
ConstCell GetCell(LevelID level, CellID id) const
{
const auto level_index = LevelIDToIndex(level);
BOOST_ASSERT(level_index < level_to_cell_offset.size());
const auto offset = level_to_cell_offset[level_index];
const auto cell_index = offset + id;
BOOST_ASSERT(cell_index < cells.size());
return ConstCell{
cells[cell_index], weights.data(), source_boundary.data(), destination_boundary.data()};
}
Cell GetCell(LevelID level, CellID id)
{
const auto level_index = LevelIDToIndex(level);
BOOST_ASSERT(level_index < level_to_cell_offset.size());
const auto offset = level_to_cell_offset[level_index];
const auto cell_index = offset + id;
BOOST_ASSERT(cell_index < cells.size());
return Cell{
cells[cell_index], weights.data(), source_boundary.data(), destination_boundary.data()};
}
private:
std::vector<EdgeWeight> weights;
std::vector<NodeID> source_boundary;
std::vector<NodeID> destination_boundary;
std::vector<CellData> cells;
std::vector<std::size_t> level_to_cell_offset;
};
}
}
#endif

View File

@ -0,0 +1,26 @@
#ifndef OSRM_UTIL_FOR_EACH_RANGE_HPP
#define OSRM_UTIL_FOR_EACH_RANGE_HPP
namespace osrm
{
namespace util
{
template <typename Iter, typename Func> void for_each_range(Iter begin, Iter end, Func f)
{
auto iter = begin;
while (iter != end)
{
const auto key = iter->first;
auto begin_range = iter;
while (iter != end && iter->first == key)
{
iter++;
}
f(begin_range, iter);
}
}
}
}
#endif

View File

@ -0,0 +1,32 @@
#ifndef OSRM_UTIL_MULTI_LEVEL_PARTITION_HPP
#define OSRM_UTIL_MULTI_LEVEL_PARTITION_HPP
#include "util/typedefs.hpp"
#include <cstdint>
namespace osrm
{
namespace util
{
using LevelID = std::uint8_t;
using CellID = std::uint32_t;
// Mock interface, can be removed when we have an actual implementation
class MultiLevelPartition
{
public:
// Returns the cell id of `node` at `level`
virtual CellID GetCell(LevelID level, NodeID node) const = 0;
// Returns the highest level in which `first` and `second` are still in different cells
virtual LevelID GetHighestDifferentLevel(NodeID first, NodeID second) const = 0;
virtual std::size_t GetNumberOfLevels() const = 0;
virtual std::size_t GetNumberOfCells(LevelID level) const = 0;
};
}
}
#endif

View File

@ -0,0 +1,357 @@
#include <boost/numeric/conversion/cast.hpp>
#include <boost/test/unit_test.hpp>
#include "util/cell_storage.hpp"
#include "util/static_graph.hpp"
#define CHECK_SIZE_RANGE(range, ref) BOOST_CHECK_EQUAL(range.end() - range.begin(), ref)
#define CHECK_EQUAL_RANGE(range, ref) \
do \
{ \
const auto &lhs = range; \
const auto &rhs = ref; \
BOOST_CHECK_EQUAL_COLLECTIONS(lhs.begin(), lhs.end(), rhs.begin(), rhs.end()); \
} while (0)
using namespace osrm;
using namespace osrm::util;
class MockMLP final : public MultiLevelPartition
{
public:
CellID GetCell(LevelID level, NodeID node) const { return levels[level - 1][node]; };
LevelID GetHighestDifferentLevel(NodeID, NodeID) const { return 3; };
std::size_t GetNumberOfLevels() const { return levels.size() + 1; }
std::size_t GetNumberOfCells(LevelID level) const
{
auto max_id = 0;
for (auto cell : levels[level - 1])
max_id = std::max<CellID>(max_id, cell);
return max_id + 1;
}
MockMLP(std::vector<std::vector<CellID>> levels_) : levels(std::move(levels_)) {}
std::vector<std::vector<CellID>> levels;
};
struct MockEdge
{
NodeID start;
NodeID target;
};
auto makeGraph(const std::vector<MockEdge> &mock_edges)
{
struct EdgeData
{
bool forward;
bool backward;
};
using Edge = util::StaticGraph<EdgeData>::InputEdge;
std::vector<Edge> edges;
std::size_t max_id = 0;
for (const auto &m : mock_edges)
{
max_id = std::max<std::size_t>(max_id, std::max(m.start, m.target));
edges.push_back(Edge{m.start, m.target, EdgeData{true, false}});
edges.push_back(Edge{m.target, m.start, EdgeData{false, true}});
}
std::sort(edges.begin(), edges.end());
return util::StaticGraph<EdgeData>(max_id + 1, edges);
}
BOOST_AUTO_TEST_SUITE(cell_storage_tests)
BOOST_AUTO_TEST_CASE(mutable_cell_storage)
{
const auto fill_range = [](auto range, const std::vector<EdgeWeight> &values) {
auto iter = range.begin();
for (auto v : values)
*iter++ = v;
BOOST_CHECK_EQUAL(range.end(), iter);
};
// node: 0 1 2 3 4 5 6 7 8 9 10 11
std::vector<CellID> l1{{0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5}};
std::vector<CellID> l2{{0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3}};
std::vector<CellID> l3{{0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1}};
std::vector<CellID> l4{{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}};
MockMLP mlp{{l1, l2, l3, l4}};
std::vector<MockEdge> edges = {
// edges sorted into border/internal by level
// level: (1) (2) (3) (4)
{0, 1}, // i i i i
{2, 3}, // i i i i
{3, 7}, // b b b i
{4, 0}, // b b b i
{4, 5}, // i i i i
{5, 6}, // b i i i
{6, 4}, // b i i i
{6, 7}, // i i i i
{7, 11}, // b b i i
{8, 9}, // i i i i
{9, 8}, // i i i i
{10, 11}, // i i i i
{11, 10} // i i i i
};
auto graph = makeGraph(edges);
// test non-const storage
CellStorage storage(mlp, graph);
// Level 1
auto cell_1_0 = storage.GetCell(1, 0);
auto cell_1_1 = storage.GetCell(1, 1);
auto cell_1_2 = storage.GetCell(1, 2);
auto cell_1_3 = storage.GetCell(1, 3);
auto cell_1_4 = storage.GetCell(1, 4);
auto cell_1_5 = storage.GetCell(1, 5);
(void)cell_1_4; // does not have border nodes
auto out_range_1_0_0 = cell_1_0.GetOutWeight(0);
auto out_range_1_2_4 = cell_1_2.GetOutWeight(4);
auto out_range_1_3_6 = cell_1_3.GetOutWeight(6);
auto out_range_1_5_11 = cell_1_5.GetOutWeight(11);
auto in_range_1_1_3 = cell_1_1.GetInWeight(3);
auto in_range_1_2_5 = cell_1_2.GetInWeight(5);
auto in_range_1_3_7 = cell_1_3.GetInWeight(7);
auto in_range_1_5_11 = cell_1_5.GetInWeight(11);
fill_range(out_range_1_0_0, {});
fill_range(out_range_1_2_4, {1});
fill_range(out_range_1_3_6, {2});
fill_range(out_range_1_5_11, {3});
CHECK_EQUAL_RANGE(in_range_1_1_3, std::vector<EdgeWeight>{});
CHECK_EQUAL_RANGE(in_range_1_2_5, std::vector<EdgeWeight>{1});
CHECK_EQUAL_RANGE(in_range_1_3_7, std::vector<EdgeWeight>{2});
CHECK_EQUAL_RANGE(in_range_1_5_11, std::vector<EdgeWeight>{3});
// Level 2
auto cell_2_0 = storage.GetCell(2, 0);
auto cell_2_1 = storage.GetCell(2, 1);
auto cell_2_2 = storage.GetCell(2, 2);
auto cell_2_3 = storage.GetCell(2, 3);
(void)cell_2_2; // does not have border nodes
auto out_range_2_0_0 = cell_2_0.GetOutWeight(0);
auto out_range_2_1_4 = cell_2_1.GetOutWeight(4);
auto out_range_2_3_11 = cell_2_3.GetOutWeight(11);
auto in_range_2_0_3 = cell_2_0.GetInWeight(3);
auto in_range_2_1_4 = cell_2_1.GetInWeight(4);
auto in_range_2_1_7 = cell_2_1.GetInWeight(7);
auto in_range_2_3_11 = cell_2_3.GetInWeight(11);
fill_range(out_range_2_0_0, {1});
fill_range(out_range_2_1_4, {2, 3});
fill_range(out_range_2_3_11, {4});
CHECK_EQUAL_RANGE(in_range_2_0_3, std::vector<EdgeWeight>{1});
CHECK_EQUAL_RANGE(in_range_2_1_4, std::vector<EdgeWeight>{2});
CHECK_EQUAL_RANGE(in_range_2_1_7, std::vector<EdgeWeight>{3});
CHECK_EQUAL_RANGE(in_range_2_3_11, std::vector<EdgeWeight>{4});
// Level 3
auto cell_3_0 = storage.GetCell(3, 0);
auto cell_3_1 = storage.GetCell(3, 1);
auto out_range_3_0_0 = cell_3_0.GetOutWeight(0);
auto out_range_3_1_4 = cell_3_1.GetOutWeight(4);
auto out_range_3_1_7 = cell_3_1.GetOutWeight(7);
auto in_range_3_0_3 = cell_3_0.GetInWeight(3);
auto in_range_3_1_4 = cell_3_1.GetInWeight(4);
auto in_range_3_1_7 = cell_3_1.GetInWeight(7);
fill_range(out_range_3_0_0, {1});
fill_range(out_range_3_1_4, {2, 3});
fill_range(out_range_3_1_7, {4, 5});
CHECK_EQUAL_RANGE(in_range_3_0_3, std::vector<EdgeWeight>({1}));
CHECK_EQUAL_RANGE(in_range_3_1_4, std::vector<EdgeWeight>({2, 4}));
CHECK_EQUAL_RANGE(in_range_3_1_7, std::vector<EdgeWeight>({3, 5}));
}
BOOST_AUTO_TEST_CASE(immutable_cell_storage)
{
// node: 0 1 2 3 4 5 6 7 8 9 10 11
std::vector<CellID> l1{{0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5}};
std::vector<CellID> l2{{0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3}};
std::vector<CellID> l3{{0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1}};
std::vector<CellID> l4{{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}};
MockMLP mlp{{l1, l2, l3, l4}};
std::vector<MockEdge> edges = {
// edges sorted into border/internal by level
// level: (1) (2) (3) (4)
{0, 1}, // i i i i
{2, 3}, // i i i i
{3, 7}, // b b b i
{4, 0}, // b b b i
{4, 5}, // i i i i
{5, 6}, // b i i i
{6, 4}, // b i i i
{6, 7}, // i i i i
{7, 11}, // b b i i
{8, 9}, // i i i i
{9, 8}, // i i i i
{10, 11}, // i i i i
{11, 10} // i i i i
};
auto graph = makeGraph(edges);
// nodes sorted into border/internal by level
// (1) (2) (3) (4)
// 0 b b b i
// 1 i i i i
// 2 i i i i
// 3 b b b i
// 4 b b b i
// 5 b i i i
// 6 b i i i
// 7 b b i i
// 8 i i i i
// 9 i i i i
// 10 i i i i
// 11 b b i i
// 1/0: 0 : 1,1,0
// 1/2: 4 : 1,1,0
// 1/3: 6 : 1,1,0
// 1/5: 11 : 1,1,1
// 1/1: 3 : 1,0,1
// 1/2: 5 : 1,0,1
// 1/3: 7 : 1,0,1
// 2/0: 0 : 1,1,0
// 2/1: 4 : 1,1,1
// 2/3: 11 : 1,1,1
// 2/0: 3 : 1,0,1
// 2/1: 7 : 1,0,1
// 3/0: 0 : 1,1,0
// 3/1: 4 : 1,1,1
// 3/1: 7 : 1,1,1
// 3/0: 3 : 1,0,1
// test const storage
const CellStorage const_storage(mlp, graph);
auto const_cell_1_0 = const_storage.GetCell(1, 0);
auto const_cell_1_1 = const_storage.GetCell(1, 1);
auto const_cell_1_2 = const_storage.GetCell(1, 2);
auto const_cell_1_3 = const_storage.GetCell(1, 3);
auto const_cell_1_4 = const_storage.GetCell(1, 4);
auto const_cell_1_5 = const_storage.GetCell(1, 5);
CHECK_EQUAL_RANGE(const_cell_1_0.GetSourceNodes(), std::vector<NodeID>({0}));
CHECK_EQUAL_RANGE(const_cell_1_1.GetSourceNodes(), std::vector<NodeID>({}));
CHECK_EQUAL_RANGE(const_cell_1_2.GetSourceNodes(), std::vector<NodeID>({4}));
CHECK_EQUAL_RANGE(const_cell_1_3.GetSourceNodes(), std::vector<NodeID>({6}));
CHECK_EQUAL_RANGE(const_cell_1_4.GetSourceNodes(), std::vector<NodeID>({}));
CHECK_EQUAL_RANGE(const_cell_1_5.GetSourceNodes(), std::vector<NodeID>({11}));
CHECK_EQUAL_RANGE(const_cell_1_0.GetDestinationNodes(), std::vector<NodeID>({}));
CHECK_EQUAL_RANGE(const_cell_1_1.GetDestinationNodes(), std::vector<NodeID>({3}));
CHECK_EQUAL_RANGE(const_cell_1_2.GetDestinationNodes(), std::vector<NodeID>({5}));
CHECK_EQUAL_RANGE(const_cell_1_3.GetDestinationNodes(), std::vector<NodeID>({7}));
CHECK_EQUAL_RANGE(const_cell_1_4.GetDestinationNodes(), std::vector<NodeID>({}));
CHECK_EQUAL_RANGE(const_cell_1_5.GetDestinationNodes(), std::vector<NodeID>({11}));
auto out_const_range_1_0_0 = const_cell_1_0.GetOutWeight(0);
auto out_const_range_1_2_4 = const_cell_1_2.GetOutWeight(4);
auto out_const_range_1_3_6 = const_cell_1_3.GetOutWeight(6);
auto out_const_range_1_5_11 = const_cell_1_5.GetOutWeight(11);
auto in_const_range_1_1_3 = const_cell_1_1.GetInWeight(3);
auto in_const_range_1_2_5 = const_cell_1_2.GetInWeight(5);
auto in_const_range_1_3_7 = const_cell_1_3.GetInWeight(7);
auto in_const_range_1_5_11 = const_cell_1_5.GetInWeight(11);
CHECK_SIZE_RANGE(out_const_range_1_0_0, 0);
CHECK_SIZE_RANGE(out_const_range_1_2_4, 1);
CHECK_SIZE_RANGE(out_const_range_1_3_6, 1);
CHECK_SIZE_RANGE(out_const_range_1_5_11, 1);
CHECK_SIZE_RANGE(in_const_range_1_1_3, 0);
CHECK_SIZE_RANGE(in_const_range_1_2_5, 1);
CHECK_SIZE_RANGE(in_const_range_1_3_7, 1);
CHECK_SIZE_RANGE(in_const_range_1_5_11, 1);
// Level 2
auto const_cell_2_0 = const_storage.GetCell(2, 0);
auto const_cell_2_1 = const_storage.GetCell(2, 1);
auto const_cell_2_2 = const_storage.GetCell(2, 2);
auto const_cell_2_3 = const_storage.GetCell(2, 3);
CHECK_EQUAL_RANGE(const_cell_2_0.GetSourceNodes(), std::vector<NodeID>({0}));
CHECK_EQUAL_RANGE(const_cell_2_1.GetSourceNodes(), std::vector<NodeID>({4}));
CHECK_EQUAL_RANGE(const_cell_2_2.GetSourceNodes(), std::vector<NodeID>({}));
CHECK_EQUAL_RANGE(const_cell_2_3.GetSourceNodes(), std::vector<NodeID>({11}));
CHECK_EQUAL_RANGE(const_cell_2_0.GetDestinationNodes(), std::vector<NodeID>({3}));
CHECK_EQUAL_RANGE(const_cell_2_1.GetDestinationNodes(), std::vector<NodeID>({4, 7}));
CHECK_EQUAL_RANGE(const_cell_2_2.GetDestinationNodes(), std::vector<NodeID>({}));
CHECK_EQUAL_RANGE(const_cell_2_3.GetDestinationNodes(), std::vector<NodeID>({11}));
auto out_const_range_2_0_0 = const_cell_2_0.GetOutWeight(0);
auto out_const_range_2_1_4 = const_cell_2_1.GetOutWeight(4);
auto out_const_range_2_3_11 = const_cell_2_3.GetOutWeight(11);
auto in_const_range_2_0_3 = const_cell_2_0.GetInWeight(3);
auto in_const_range_2_1_4 = const_cell_2_1.GetInWeight(4);
auto in_const_range_2_1_7 = const_cell_2_1.GetInWeight(7);
auto in_const_range_2_3_7 = const_cell_2_3.GetInWeight(11);
CHECK_SIZE_RANGE(out_const_range_2_0_0, 1);
CHECK_SIZE_RANGE(out_const_range_2_1_4, 2);
CHECK_SIZE_RANGE(out_const_range_2_3_11, 1);
CHECK_SIZE_RANGE(in_const_range_2_0_3, 1);
CHECK_SIZE_RANGE(in_const_range_2_1_4, 1);
CHECK_SIZE_RANGE(in_const_range_2_1_7, 1);
CHECK_SIZE_RANGE(in_const_range_2_3_7, 1);
// Level 3
auto const_cell_3_0 = const_storage.GetCell(3, 0);
auto const_cell_3_1 = const_storage.GetCell(3, 1);
CHECK_EQUAL_RANGE(const_cell_3_0.GetSourceNodes(), std::vector<NodeID>({0}));
CHECK_EQUAL_RANGE(const_cell_3_1.GetSourceNodes(), std::vector<NodeID>({4, 7}));
CHECK_EQUAL_RANGE(const_cell_3_0.GetDestinationNodes(), std::vector<NodeID>({3}));
CHECK_EQUAL_RANGE(const_cell_3_1.GetDestinationNodes(), std::vector<NodeID>({4, 7}));
auto out_const_range_3_0_0 = const_cell_3_0.GetOutWeight(0);
auto out_const_range_3_1_4 = const_cell_3_1.GetOutWeight(4);
auto out_const_range_3_1_7 = const_cell_3_1.GetOutWeight(7);
auto in_const_range_3_0_3 = const_cell_3_0.GetInWeight(3);
auto in_const_range_3_1_4 = const_cell_3_1.GetInWeight(4);
auto in_const_range_3_1_7 = const_cell_3_1.GetInWeight(7);
CHECK_SIZE_RANGE(out_const_range_3_0_0, 1);
CHECK_SIZE_RANGE(out_const_range_3_1_4, 2);
CHECK_SIZE_RANGE(out_const_range_3_1_7, 2);
CHECK_SIZE_RANGE(in_const_range_3_0_3, 1);
CHECK_SIZE_RANGE(in_const_range_3_1_4, 2);
CHECK_SIZE_RANGE(in_const_range_3_1_7, 2);
auto const_cell_4_0 = const_storage.GetCell(4, 0);
CHECK_EQUAL_RANGE(const_cell_4_0.GetSourceNodes(), std::vector<NodeID>({}));
CHECK_EQUAL_RANGE(const_cell_4_0.GetDestinationNodes(), std::vector<NodeID>({}));
}
BOOST_AUTO_TEST_SUITE_END()