Restructure Obvious Turn Handling, code transfer from #4426

This commit is contained in:
Michael Krasnyk 2018-02-06 13:36:45 +01:00
parent bdb116afe5
commit d166fc6a75
9 changed files with 2011 additions and 29 deletions

File diff suppressed because it is too large Load Diff

View File

@ -614,8 +614,9 @@ Feature: Turn Lane Guidance
| |
| |
b d
h c
' -- g - - f
h-----c
| `-f
g
"""
And the ways

View File

@ -964,15 +964,15 @@ Feature: Simple Turns
Given the node map
"""
g
f y
i
j k a b x
e c
d
|
_--f-----y
i-' |
j-k-a]|[b---x
e 'c
|'d'
|
h
|
q
"""
@ -1373,6 +1373,36 @@ Feature: Simple Turns
| a,d | ab,bcd,bcd | depart,fork slight right,arrive |
| a,g | ab,befg,befg | depart,fork slight left,arrive |
@routing @car
Scenario: No turn instruction when turning from unnamed onto unnamed
Given the node map
"""
a
|
|
|
|
b----------------c
|
|
|
|
|
|
d
"""
And the ways
| nodes | highway | name | ref |
| ab | trunk_link | | |
| db | secondary | | L 460 |
| bc | secondary | | |
When I route I should get
| from | to | route | ref | turns |
| d | c | ,, | L 460,, | depart,turn right,arrive |
| c | d | ,, | ,L 460,L 460 | depart,turn left,arrive |
# https://www.openstreetmap.org/#map=18/52.25130/10.42545
Scenario: Turn for roads with no name, ref changes
Given the node map

View File

@ -152,7 +152,7 @@ Feature: Turn Function Information
And stdout should contain "number_of_roads 3"
And stdout should contain "source_priority_class 4"
And stdout should contain "target_priority_class 0"
And stdout should contain "target_priority_class 11"
And stdout should contain "target_priority_class 10"
# turning abd, give information about bc
And stdout should contain /roads_on_the_right \[1\] speed: [0-9]+, is_incoming: false, is_outgoing: true, highway_turn_classification: 4, access_turn_classification: 0/
# turning abc, give information about bd
@ -180,7 +180,3 @@ Feature: Turn Function Information
And stdout should contain /roads_on_the_right \[1\] speed: [0-9]+, is_incoming: true, is_outgoing: false, highway_turn_classification: 3, access_turn_classification: 0/
# turning abc, give information about about db
And stdout should contain /roads_on_the_left \[1\] speed: [0-9]+, is_incoming: true, is_outgoing: false, highway_turn_classification: 0, access_turn_classification: 1/

View File

@ -1,6 +1,7 @@
#ifndef OSRM_EXTRACTOR_CLASSIFICATION_DATA_HPP_
#define OSRM_EXTRACTOR_CLASSIFICATION_DATA_HPP_
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <cstdlib>
@ -22,17 +23,25 @@ namespace RoadPriorityClass
typedef std::uint8_t Enum;
// Top priority Road
const constexpr Enum MOTORWAY = 0;
const constexpr Enum MOTORWAY_LINK = 1;
// Second highest priority
const constexpr Enum TRUNK = 2;
const constexpr Enum TRUNK_LINK = 3;
// Main roads
const constexpr Enum PRIMARY = 4;
const constexpr Enum PRIMARY_LINK = 5;
const constexpr Enum SECONDARY = 6;
const constexpr Enum SECONDARY_LINK = 7;
const constexpr Enum TERTIARY = 8;
const constexpr Enum TERTIARY_LINK = 9;
// Residential Categories
const constexpr Enum MAIN_RESIDENTIAL = 10;
const constexpr Enum SIDE_RESIDENTIAL = 11;
const constexpr Enum ALLEY = 12;
const constexpr Enum PARKING = 13;
// Link Category
const constexpr Enum LINK_ROAD = 14;
const constexpr Enum UNCLASSIFIED = 15;
// Bike Accessible
const constexpr Enum BIKE_PATH = 16;
// Walk Accessible
@ -125,6 +134,67 @@ inline bool canBeSeenAsFork(const RoadClassification first, const RoadClassifica
static_cast<int>(second.GetPriority())) <= 1;
}
// priority groups are road classes that can be categoriesed as somewhat similar
inline std::uint32_t getRoadGroup(const RoadClassification classification)
{
// a list of dividers (inclusive) specifying the end of a class
const auto constexpr num_dividers = 7;
// dividers point one past the entry we want, so motorways will be pre-primary
const constexpr RoadPriorityClass::Enum dividers[num_dividers] = {
RoadPriorityClass::PRIMARY,
RoadPriorityClass::TERTIARY_LINK,
RoadPriorityClass::ALLEY,
RoadPriorityClass::LINK_ROAD,
RoadPriorityClass::UNCLASSIFIED,
RoadPriorityClass::BIKE_PATH,
RoadPriorityClass::CONNECTIVITY + 1};
const auto upper =
std::upper_bound(dividers, dividers + num_dividers, classification.GetPriority());
return upper - dividers;
}
// a road classification is strictly less, if it belongs to a lower general category of roads. E.g.
// normal city roads are strictly less of a priority than a motorway and alleys are strictly less
// than inner-city roads
inline bool strictlyLess(const RoadClassification lhs, const RoadClassification rhs)
{
const auto lhs_class = getRoadGroup(lhs);
const auto rhs_class = getRoadGroup(rhs);
// different class, not neighbors
return lhs_class > rhs_class &&
((lhs.GetPriority() - rhs.GetPriority() > 4) || lhs.IsLowPriorityRoadClass());
}
// check whether a link class is the fitting link class to a road
inline bool isLinkTo(const RoadClassification link, const RoadClassification road)
{
// needs to be a link/non-link combination
if (!link.IsLinkClass() || road.IsLinkClass())
return false;
switch (link.GetPriority())
{
case RoadPriorityClass::MOTORWAY_LINK:
return road.GetPriority() == RoadPriorityClass::MOTORWAY;
case RoadPriorityClass::TRUNK_LINK:
return road.GetPriority() == RoadPriorityClass::TRUNK;
case RoadPriorityClass::PRIMARY_LINK:
return road.GetPriority() == RoadPriorityClass::PRIMARY;
case RoadPriorityClass::SECONDARY_LINK:
return road.GetPriority() == RoadPriorityClass::SECONDARY;
case RoadPriorityClass::TERTIARY_LINK:
return road.GetPriority() == RoadPriorityClass::TERTIARY;
default:
return false;
}
}
inline bool obviousByRoadClass(const RoadClassification in_classification,
const RoadClassification obvious_candidate,
const RoadClassification compare_candidate)

View File

@ -68,6 +68,16 @@ class IntersectionHandler
TurnType::Enum areSameClasses(const EdgeID via_edge, const ConnectedRoad &road) const;
template <typename IntersectionType> // works with Intersection and IntersectionView
inline bool IsDistinctTurn(const std::size_t index,
const EdgeID via_edge,
const IntersectionType &intersection) const;
template <typename IntersectionType> // works with Intersection and IntersectionView
inline bool IsDistinctContinue(const std::size_t index,
const EdgeID via_edge,
const IntersectionType &intersection) const;
// Find the most obvious turn to follow. The function returns an index into the intersection
// determining whether there is a road that can be seen as obvious turn in the presence of many
// other possible turns. The function will consider road categories and other inputs like the
@ -75,6 +85,14 @@ class IntersectionHandler
template <typename IntersectionType> // works with Intersection and IntersectionView
std::size_t findObviousTurn(const EdgeID via_edge, const IntersectionType &intersection) const;
template <typename IntersectionType> // works with Intersection and IntersectionView
std::size_t findObviousTurnOld(const EdgeID via_edge,
const IntersectionType &intersection) const;
template <typename IntersectionType> // works with Intersection and IntersectionView
std::size_t findObviousTurnNew(const EdgeID via_edge,
const IntersectionType &intersection) const;
// Obvious turns can still take multiple forms. This function looks at the turn onto a road
// candidate when coming from a via_edge and determines the best instruction to emit.
// `through_street` indicates if the street turned onto is a through sreet (think mergees and
@ -124,10 +142,621 @@ class IntersectionHandler
};
// Impl.
using osrm::extractor::getRoadGroup;
template <typename IntersectionType> // works with Intersection and IntersectionView
inline bool IntersectionHandler::IsDistinctTurn(const std::size_t index,
const EdgeID via_edge,
const IntersectionType &intersection) const
{
// for comparing road categories
const auto &via_edge_data = node_based_graph.GetEdgeData(via_edge);
const auto &candidate = intersection[index];
const auto &candidate_data = node_based_graph.GetEdgeData(candidate.eid);
auto const num_lanes = [](auto const &data) {
return data.flags.road_classification.GetNumberOfLanes();
};
auto const override_class_by_lanes = [&](auto const &compare_data) {
// sometimes roads of same size are tagged strangely within a neighborhood, combining
// primary roads with residential roads. If the road with can be deducted from lanes, we
// can override such a classification
if (num_lanes(compare_data) > 0 && num_lanes(via_edge_data) > 0)
{
// check if via-edge has more than one additional lane, relative to the compare data
if (num_lanes(via_edge_data) - num_lanes(compare_data) > 1)
return true;
}
return false;
};
// check if a road is distinct to the obvious turn candidate in its road class. This is the case
// only if we pass by a lower road category class or a link to the same category
auto const distinct_by_class = [&](auto const &road) {
auto const &compare_data = node_based_graph.GetEdgeData(road.eid);
// passing a road of a stricly lower category (e.g. residential driving past driveway,
// primary road passing a residential road) but also exiting a freeway onto a primary in the
// presence of an alley
if (strictlyLess(compare_data.flags.road_classification,
via_edge_data.flags.road_classification) &&
strictlyLess(compare_data.flags.road_classification,
candidate_data.flags.road_classification) &&
override_class_by_lanes(compare_data))
{
return true;
}
// passing by a link of the same category
if (isLinkTo(compare_data.flags.road_classification,
via_edge_data.flags.road_classification) &&
isLinkTo(compare_data.flags.road_classification,
candidate_data.flags.road_classification))
return true;
// staying on the same road class, encountering a road that is a severe change in class
// (residential-> motorway_link) is considered a fair distinction
if (compare_data.flags.road_classification.IsLinkClass() &&
(via_edge_data.flags.road_classification.GetPriority() ==
candidate_data.flags.road_classification.GetPriority()) &&
(std::abs(static_cast<int>(getRoadGroup(via_edge_data.flags.road_classification)) -
static_cast<int>(getRoadGroup(compare_data.flags.road_classification))) >
4) &&
override_class_by_lanes(compare_data))
{
return true;
}
return false;
};
// in case of narrow turns, we apply different criteria than for actual turns. In case of a
// narrow turn, having two choices one of which is forbidden is fine. In case of a end of the
// road turn, having two directions and not being allowed to turn onto one of them isn't always
// as clear
auto const candidate_deviation = util::angularDeviation(candidate.angle, STRAIGHT_ANGLE);
const auto &via_edge_annotation =
node_data_container.GetAnnotation(via_edge_data.annotation_data);
const auto &candidate_annotation =
node_data_container.GetAnnotation(candidate_data.annotation_data);
const auto constexpr max_narrow_deviation = GROUP_ANGLE;
// on cases where the candidate deviation is in a narrow range, we can consider the deviaiton of
// other turns as a distinction criteria
//
// c
// *
// *
// b - d
// |
// a
// for example can be considered obvious as goig straight, while
//
// c
// d *
// * *
// b
// |
// a
// should err on the side of caution (when only comparing deviations)
if (candidate_deviation <= max_narrow_deviation)
{
// check if the candidate changes it's name
auto const candidate_changes_name =
util::guidance::requiresNameAnnounced(via_edge_annotation.name_id,
candidate_annotation.name_id,
name_table,
street_name_suffix_table);
// check if there are other narrow turns are not considered passing a low category or simply
// a link of the same type as the potentially obvious turn
auto const is_similar_turn = [&](auto const &road) {
// skip over our candidate
if (road.eid == candidate.eid)
return false;
// since we have a narrow turn, we only care for roads allowing entry
if (candidate_deviation < NARROW_TURN_ANGLE && !road.entry_allowed)
{
return false;
}
// detect link roads in segregated intersections
if (!road.entry_allowed && (intersection.size() == 5) &&
(std::count_if(intersection.begin(), intersection.end(), [](auto const &road) {
return road.entry_allowed;
}) <= 2))
{
// if we are on a link road and all other turns form a 4 way intersection, the
// angular differences of all other turns need to be near 90 degrees
bool all_close_to_90 = true;
for (std::size_t i = 1; i < 3; ++i)
{
auto const deviation =
util::angularDeviation(intersection[i].angle, intersection[i + 1].angle);
if (deviation < 75 || deviation > 105)
{
all_close_to_90 = false;
break;
}
}
if (all_close_to_90)
{
return false;
}
}
auto const compare_deviation = util::angularDeviation(road.angle, STRAIGHT_ANGLE);
auto const &compare_data = node_based_graph.GetEdgeData(road.eid);
auto const &compare_annotation =
node_data_container.GetAnnotation(compare_data.annotation_data);
// in the states, many small side-roads are marked restricted. We could consider them
// driveways. Passing by one of these should always be obvious
if (candidate_deviation < NARROW_TURN_ANGLE &&
(compare_deviation > 1.5 * candidate_deviation) && compare_data.flags.restricted &&
!via_edge_data.flags.restricted && !candidate_data.flags.restricted)
{
return false;
}
// if we see a roundabout that is a larger turn, we do not consider it similar. This is
// related to throughabouts which often are slightly curved on exits:
// |
// - a d -
// \` e f ` /
// b - - c
if (compare_data.flags.roundabout != via_edge_data.flags.roundabout &&
via_edge_data.flags.roundabout == candidate_data.flags.roundabout &&
candidate_deviation < compare_deviation)
return false;
// to find whether a continuing road is turning, we need to check if it is an actual
// turn, a segregated intersection
auto const opposing_turn =
intersection.FindClosestBearing(util::bearing::reverse(road.perceived_bearing));
auto const opposing_data = node_based_graph.GetEdgeData(opposing_turn->eid);
// Check for a situation like:
//
// a a
// a a
// a a + b b + b b
// c ac
// c a c
//
// opposed to
//
// a
// a
// a a + b b
// a
// a
auto const name_changes_onto_compare =
util::guidance::requiresNameAnnounced(via_edge_annotation.name_id,
compare_annotation.name_id,
name_table,
street_name_suffix_table);
auto const opposing_name =
node_data_container.GetAnnotation(opposing_data.annotation_data).name_id;
auto const name_changes_onto_compare_from_opposing =
util::guidance::requiresNameAnnounced(opposing_name,
compare_annotation.name_id,
name_table,
street_name_suffix_table);
// check if the continuing road takes a turn, and we are turning off it. This is
// required, sicne we could end up announcing `follow X for 2 miles` and if `X` turns,
// we would be inclined to do the turn as well, if it isn't crazy (like a sharp turn)
auto const continue_turns = (via_edge_annotation.name_id != EMPTY_NAMEID) &&
!name_changes_onto_compare &&
(util::angularDeviation(road.angle, opposing_turn->angle) <
(STRAIGHT_ANGLE - NARROW_TURN_ANGLE) &&
name_changes_onto_compare_from_opposing) &&
util::angularDeviation(road.angle, 0) > NARROW_TURN_ANGLE;
auto const continuing_road_takes_a_turn = candidate_changes_name && continue_turns;
// at least a relative and a maximum difference, if the road name does not turn.
// Since we can announce `stay on X for 2 miles, we need to ensure that we announce
// turns off it (even if straight). Otherwise people might follow X further than they
// should
// For roads splitting with the same name, we ask for a larger difference.
auto const minimum_angle_difference = FUZZY_ANGLE_DIFFERENCE;
/*
(via_edge_annotation.name_id != EMPTY_NAMEID && !candidate_changes_name &&
!name_changes_onto_compare)
? NARROW_TURN_ANGLE
: FUZZY_ANGLE_DIFFERENCE;
*/
// if a turn angle isn't remotely forward, we don't consider a deviation to be distinct
// auto const both_turns_go_into_same_direction =
// (candidate.angle >= STRAIGHT_ANGLE) ==
// (road.angle >= STRAIGHT_ANGLE); // are both turns to the left?
auto const roads_deviation_is_distinct =
compare_deviation / std::max(0.1, candidate_deviation) > DISTINCTION_RATIO &&
std::abs(compare_deviation - candidate_deviation) > minimum_angle_difference;
auto const continue_is_main_class =
via_edge_data.flags.road_classification.GetPriority() <=
extractor::RoadPriorityClass::SECONDARY;
if ((!continuing_road_takes_a_turn || !continue_is_main_class) &&
roads_deviation_is_distinct)
{
return false;
}
// in case of slight turns, there can be exits that are also very narrow. If they are on
// a new lane though, we accept smaller distinction angles
//
// a - - - b - - - - c
// ` ` ` `d
//
// A narrow exit lane can be present, but still be distinct from the road
if (num_lanes(via_edge_data) > 0 &&
num_lanes(candidate_data) == num_lanes(via_edge_data))
{
if (compare_deviation > candidate_deviation &&
candidate_deviation <= FUZZY_ANGLE_DIFFERENCE &&
(compare_deviation - candidate_deviation) > 0.5 * FUZZY_ANGLE_DIFFERENCE)
{
// very slight angle going straight on the exact same number of lanes as coming
// in, one turn branching off in a slight angle with additional lanes
return false;
}
}
// when crossing an intersection of a similar road category, lower deviations can also
// make sense
// crossing a compare road
auto const crossing_compare =
!name_changes_onto_compare_from_opposing &&
(util::angularDeviation(opposing_turn->angle, road.angle) >
STRAIGHT_ANGLE - FUZZY_ANGLE_DIFFERENCE) &&
name_changes_onto_compare;
// in case of a continuing road of higher road class, we accept quite a bit loweer
// distinction
auto const compare_has_lower_class =
(candidate_data.flags.road_classification.GetPriority() ==
via_edge_data.flags.road_classification.GetPriority()) &&
(candidate_data.flags.road_classification.GetPriority() <
compare_data.flags.road_classification.GetPriority());
// for something like a tertiary link, we skip over tertiary, secondary_link, secondary,
// primary_link and require at least a primary road
auto const compare_has_way_higher_class =
(candidate_data.flags.road_classification.GetPriority() ==
via_edge_data.flags.road_classification.GetPriority()) &&
(std::abs(static_cast<std::int32_t>(
candidate_data.flags.road_classification.GetPriority()) -
static_cast<std::int32_t>(
compare_data.flags.road_classification.GetPriority())) > 4);
if (!candidate_changes_name && !continuing_road_takes_a_turn &&
(compare_has_lower_class || compare_has_way_higher_class || crossing_compare) &&
compare_deviation / std::max(0.1, candidate_deviation) > 0.7 * DISTINCTION_RATIO)
{
return false;
}
// since the angle and allowed match, we compare road categories. Passing a low priority
// road allows us to consider it non obvious
if (distinct_by_class(road))
{
return false;
}
// switching the general road class within a turn is not a likely maneuver. We consider
// a turn distinct enough (given it's straight/narrow continue), if it's road class
// differs from other turns (and is of a lesser category)
if ((getRoadGroup(via_edge_data.flags.road_classification) !=
getRoadGroup(compare_data.flags.road_classification)) &&
(via_edge_data.flags.road_classification.GetPriority() ==
candidate_data.flags.road_classification.GetPriority()))
return false;
return true;
};
auto const itr =
std::find_if(intersection.begin() + 1, intersection.end(), is_similar_turn);
return itr == intersection.end();
}
else
{
// deviation is larger than NARROW_TURN_ANGLE0 here for the candidate
// check if there is any turn, that might look just as obvious, even though it might not be
// allowed. Entry-allowed isn't considered a valid distinction criterion here
auto const is_similar_turn = [&](auto const &road) {
// skip over our candidate
if (road.eid == candidate.eid)
return false;
// we do not consider roads of far lesser category to be more obvious
const auto &compare_data = node_based_graph.GetEdgeData(road.eid);
/*
if (strictlyLess(compare_data.flags.road_classification,
candidate_data.flags.road_classification))
{
std::cout << "Road class is strictly less" << std::endl;
return false;
}
*/
// if the class is just not on the same level
if (distinct_by_class(road) && !override_class_by_lanes(compare_data))
{
return false;
}
// just as above, switching the general road class within a turn is not a likely
// maneuver. We consider
// a turn distinct enough (given it's straight/narrow continue), if it's road class
// differs from other turns. However, the difference in angles between the two needs to
// be reasonable as well. When coming down to tertiary and less, road groups are more or
// less random
if (util::angularDeviation(road.angle, candidate.angle) < 100 &&
via_edge_data.flags.road_classification.GetPriority() <=
extractor::RoadPriorityClass::SECONDARY &&
((getRoadGroup(via_edge_data.flags.road_classification) !=
getRoadGroup(compare_data.flags.road_classification)) &&
(via_edge_data.flags.road_classification.GetPriority() ==
candidate_data.flags.road_classification.GetPriority())) &&
!override_class_by_lanes(compare_data) &&
(via_edge_data.flags.road_classification.GetPriority() !=
extractor::RoadPriorityClass::UNCLASSIFIED) &&
(compare_data.flags.road_classification.GetPriority() !=
extractor::RoadPriorityClass::UNCLASSIFIED))
{
return false;
}
// if the turn is much stronger, we are also fine (note that we do not have to check
// absolutes, since candidate is at least > NARROW_TURN_ANGLE
const auto compare_deviation = util::angularDeviation(road.angle, STRAIGHT_ANGLE);
if (compare_deviation / candidate_deviation > DISTINCTION_RATIO)
{
return false;
}
return true;
};
return std::find_if(intersection.begin() + 1, intersection.end(), is_similar_turn) ==
intersection.end();
}
}
template <typename IntersectionType> // works with Intersection and IntersectionView
inline bool IntersectionHandler::IsDistinctContinue(const std::size_t index,
const EdgeID via_edge,
const IntersectionType &intersection) const
{
// if its good enough for a turn, it's good enough for a continue
if (IsDistinctTurn(index, via_edge, intersection))
return true;
auto const in_classification = node_based_graph.GetEdgeData(via_edge).flags.road_classification;
auto const continue_classification =
node_based_graph.GetEdgeData(intersection[index].eid).flags.road_classification;
// nearly straight on the same road type
if (in_classification.GetPriority() == continue_classification.GetPriority() &&
util::angularDeviation(intersection[index].angle, STRAIGHT_ANGLE) <
MAXIMAL_ALLOWED_NO_TURN_DEVIATION)
return true;
return false;
}
// Impl.
template <typename IntersectionType> // works with Intersection and IntersectionView
std::size_t IntersectionHandler::findObviousTurn(const EdgeID via_edge,
const IntersectionType &intersection) const
{
auto obvious_old = findObviousTurnOld(via_edge, intersection);
auto obvious_new = findObviousTurnNew(via_edge, intersection);
// if (obvious_new != obvious_old)
// {
// std::cout << "via_edge==" << via_edge << " old " << obvious_old << " new " <<
// obvious_new
// << "\n";
// BOOST_ASSERT(false);
// }
(void)obvious_old;
return obvious_new;
}
template <typename IntersectionType> // works with Intersection and IntersectionView
std::size_t IntersectionHandler::findObviousTurnNew(const EdgeID via_edge,
const IntersectionType &intersection) const
{
// no obvious road
if (intersection.size() == 1)
return 0;
// a single non u-turn is obvious
if (intersection.size() == 2)
return 1;
// the way we are coming from
auto const &via_edge_data = node_based_graph.GetEdgeData(via_edge);
auto const &via_edge_annotation =
node_data_container.GetAnnotation(via_edge_data.annotation_data);
// implement a filter, taking out all roads of lower class or different names
auto const continues_on_name_with_higher_class = [&](auto const &road) {
// it needs to be possible to enter the road
if (!road.entry_allowed)
return true;
// to continue on a name, we need to have one first
if (via_edge_annotation.name_id == EMPTY_NAMEID &&
!via_edge_data.flags.road_classification.IsLowPriorityRoadClass())
return true;
// and we cannot yloose it (roads loosing their name will be handled after this check here)
auto const &road_data = node_based_graph.GetEdgeData(road.eid);
const auto &road_annotation = node_data_container.GetAnnotation(road_data.annotation_data);
if (road_annotation.name_id == EMPTY_NAMEID &&
!road_data.flags.road_classification.IsLowPriorityRoadClass())
return true;
// if not both of the entries are empty, we do not consider this a continue
if ((via_edge_annotation.name_id == EMPTY_NAMEID) ^
(road_annotation.name_id == EMPTY_NAMEID))
return true;
// the priority can only stay the same or increase. We don't consider a primary->residential
// or residential->service as a continuing road
if (strictlyLess(road_data.flags.road_classification,
via_edge_data.flags.road_classification))
return true;
// filter out link classes to our current class, since they should only be connectivity
if (isLinkTo(road_data.flags.road_classification, via_edge_data.flags.road_classification))
return true;
// most expensive check last (since we filter, we check whether the name changes
return util::guidance::requiresNameAnnounced(via_edge_annotation.name_id,
road_annotation.name_id,
name_table,
street_name_suffix_table);
};
// check if the current road continues at a given index
auto const road_continues_itr =
intersection.findClosestTurn(STRAIGHT_ANGLE, continues_on_name_with_higher_class);
// this check is not part of the main conditions, so that if the turn looks obvious from all
// other perspectives, a mode change will not result in different classification
auto const to_index_if_valid = [&](auto const iterator) -> std::size_t {
auto const &from_data = node_based_graph.GetEdgeData(via_edge);
auto const &to_data = node_based_graph.GetEdgeData(iterator->eid);
if (from_data.flags.roundabout != to_data.flags.roundabout)
return 0;
auto const from_mode =
node_data_container.GetAnnotation(from_data.annotation_data).travel_mode;
auto const to_mode = node_data_container.GetAnnotation(to_data.annotation_data).travel_mode;
if (from_mode == to_mode)
return std::distance(intersection.begin(), iterator);
else
return 0;
};
// in case the continuing road is distinct, we prefer continuing on the current road. Only if
// continue does not exist or we are not distinct, we look for other possible candidates
if (road_continues_itr != intersection.end() &&
IsDistinctContinue(
std::distance(intersection.begin(), road_continues_itr), via_edge, intersection))
{
return to_index_if_valid(road_continues_itr);
}
// The road doesn't continue in an obvious fashion. At least we see the start of a new road
// here, which might be more obvious than (for example) a turning road of the same name. The
// next goal is to find a road which is going more or less straight, but is also a matching
// category. So if we are on a primary that has an alley right ahead, the alley will not
// quality. But if primary goes straight onto secondary / turns left into primary. We would
// consider the secondary a candidate.
// opposed to before, we do not care about name changes, again: this is a filter, so internal
// false/true will be negated for selection
auto const valid_of_higher_or_same_category = [&](auto const &road) {
if (!road.entry_allowed)
return true;
auto const &road_data = node_based_graph.GetEdgeData(road.eid);
if (strictlyLess(road_data.flags.road_classification,
via_edge_data.flags.road_classification))
return true;
if (isLinkTo(road_data.flags.road_classification, via_edge_data.flags.road_classification))
return true;
return false;
};
// check for roads that allow entry only
auto const straightmost_turn_itr =
intersection.findClosestTurn(STRAIGHT_ANGLE, valid_of_higher_or_same_category);
if (straightmost_turn_itr != intersection.end() &&
IsDistinctTurn(
std::distance(intersection.begin(), straightmost_turn_itr), via_edge, intersection))
{
return to_index_if_valid(straightmost_turn_itr);
}
auto const valid_turn = [&](auto const &road) { return !road.entry_allowed; };
// we cannot find a turn of same or higher priority, so we check if any straightmost turn could
// be obvious. We only consider somewhat narrow turns for these cases though
auto const straightmost_valid = intersection.findClosestTurn(STRAIGHT_ANGLE, valid_turn);
// no valid turns
if (straightmost_valid == intersection.end())
return 0;
auto const non_sharp_turns = intersection.Count(
[&](auto const &road) { return util::angularDeviation(road.angle, STRAIGHT_ANGLE) <= 90; });
auto const straight_is_only_non_sharp =
(util::angularDeviation(straightmost_valid->angle, STRAIGHT_ANGLE) <= 90) &&
(non_sharp_turns == 1);
if ((straightmost_valid != straightmost_turn_itr) &&
(straightmost_valid != intersection.end()) &&
(util::angularDeviation(STRAIGHT_ANGLE, straightmost_valid->angle) <= GROUP_ANGLE ||
straight_is_only_non_sharp) &&
!node_based_graph.GetEdgeData(straightmost_valid->eid)
.flags.road_classification.IsLowPriorityRoadClass() &&
IsDistinctTurn(
std::distance(intersection.begin(), straightmost_valid), via_edge, intersection))
{
return to_index_if_valid(straightmost_valid);
}
// special case handling for motorways, for which nearly narrow / only allowed turns are always
// obvious
if (node_based_graph.GetEdgeData(straightmost_valid->eid)
.flags.road_classification.IsMotorwayClass() &&
util::angularDeviation(straightmost_valid->angle, STRAIGHT_ANGLE) <= GROUP_ANGLE &&
intersection.countEnterable() == 1)
{
return to_index_if_valid(straightmost_valid);
}
// Special case handling for roads splitting up, all the same name (exactly the same)
if (intersection.size() == 3 &&
std::all_of(intersection.begin(),
intersection.end(),
[ id = via_edge_annotation.name_id, this ](auto const &road) {
auto const data_id = node_based_graph.GetEdgeData(road.eid).annotation_data;
auto const name_id = node_data_container.GetAnnotation(data_id).name_id;
return (name_id != EMPTY_NAMEID) && (name_id == id);
}) &&
intersection.countEnterable() == 1 &&
// ensure that we do not lookt at a end of the road turn in a segregated intersection
(util::angularDeviation(intersection[1].angle, 90) > NARROW_TURN_ANGLE ||
util::angularDeviation(intersection[2].angle, 270) > NARROW_TURN_ANGLE))
{
return to_index_if_valid(straightmost_valid);
}
return 0;
}
template <typename IntersectionType> // works with Intersection and IntersectionView
std::size_t IntersectionHandler::findObviousTurnOld(const EdgeID via_edge,
const IntersectionType &intersection) const
{
using Road = typename IntersectionType::value_type;
using osrm::util::angularDeviation;

View File

@ -6,19 +6,19 @@ local Guidance = {}
-- Guidance: Default Mapping from roads to types/priorities
highway_classes = {
motorway = road_priority_class.motorway,
motorway_link = road_priority_class.link_road,
motorway_link = road_priority_class.motorway_link,
trunk = road_priority_class.trunk,
trunk_link = road_priority_class.link_road,
trunk_link = road_priority_class.trunk_link,
primary = road_priority_class.primary,
primary_link = road_priority_class.link_road,
primary_link = road_priority_class.primary_link,
secondary = road_priority_class.secondary,
secondary_link = road_priority_class.link_road,
secondary_link = road_priority_class.secondary_link,
tertiary = road_priority_class.tertiary,
tertiary_link = road_priority_class.link_road,
unclassified = road_priority_class.side_residential,
residential = road_priority_class.side_residential,
service = road_priority_class.connectivity,
living_street = road_priority_class.main_residential,
tertiary_link = road_priority_class.tertiary_link,
unclassified = road_priority_class.unclassified,
residential = road_priority_class.main_residential,
service = road_priority_class.alley,
living_street = road_priority_class.side_residential,
track = road_priority_class.bike_path,
path = road_priority_class.bike_path,
footway = road_priority_class.foot_path,
@ -60,6 +60,14 @@ link_types = Set {
'tertiary_link'
}
-- roads like parking lots are very unimportant for normal driving
parking_class = Set{
'parking_aisle',
'driveway',
'drive-through',
'emergency_access'
}
function Guidance.set_classification (highway, result, input_way)
if motorway_types[highway] then
result.road_classification.motorway_class = true;
@ -67,10 +75,30 @@ function Guidance.set_classification (highway, result, input_way)
if link_types[highway] then
result.road_classification.link_class = true;
end
if highway_classes[highway] ~= nil then
result.road_classification.road_priority_class = highway_classes[highway]
-- we distinguish between different service types, if specified, we recognise parking and alleys.
-- If we see an unrecognised type, we assume a pure connectivity road. All unspecified are recognised as alley
if highway ~= nil and highway == 'service' then
local service_type = input_way:get_value_by_key('service');
if service_type ~= nil and parking_class[service_type] then
result.road_classification.road_priority_class = road_priority_class.parking;
else
if service_type ~= nil and service_type == 'alley' then
result.road_classification.road_priority_class = road_priority_class.alley;
else
if serice_type == nil then
result.road_classification.road_priority_class = road_priority_class.alley;
else
result.road_classification.road_priority_class = highway_classes[highway]
end
end
end
else
result.road_classification.road_priority_class = default_highway_class
if highway_classes[highway] ~= nil then
result.road_classification.road_priority_class = highway_classes[highway]
else
result.road_classification.road_priority_class = default_highway_class
end
end
if road_types[highway] then
result.road_classification.may_be_ignored = false;
@ -137,7 +165,7 @@ function Guidance.get_turn_lanes(way,data)
local psv_fw, psv_bw = get_psv_counts(way,data)
local turn_lanes_fw, turn_lanes_bw = Tags.get_forward_backward_by_key(way,data,'turn:lanes')
local vehicle_lanes_fw, vehicle_lanes_bw = Tags.get_forward_backward_by_key(way,data,'vehicle:lanes')
--note: backward lanes swap psv_bw and psv_fw
return process_lanes(turn_lanes_fw,vehicle_lanes_fw,psv_bw,psv_fw) or turn_lanes,
process_lanes(turn_lanes_bw,vehicle_lanes_bw,psv_fw,psv_bw) or turn_lanes

View File

@ -140,20 +140,36 @@ void Sol2ScriptingEnvironment::InitContext(LuaScriptingContext &context)
context.state.new_enum("road_priority_class",
"motorway",
extractor::RoadPriorityClass::MOTORWAY,
"motorway_link",
extractor::RoadPriorityClass::MOTORWAY_LINK,
"trunk",
extractor::RoadPriorityClass::TRUNK,
"trunk_link",
extractor::RoadPriorityClass::TRUNK_LINK,
"primary",
extractor::RoadPriorityClass::PRIMARY,
"primary_link",
extractor::RoadPriorityClass::PRIMARY_LINK,
"secondary",
extractor::RoadPriorityClass::SECONDARY,
"secondary_link",
extractor::RoadPriorityClass::SECONDARY_LINK,
"tertiary",
extractor::RoadPriorityClass::TERTIARY,
"tertiary_link",
extractor::RoadPriorityClass::TERTIARY_LINK,
"main_residential",
extractor::RoadPriorityClass::MAIN_RESIDENTIAL,
"side_residential",
extractor::RoadPriorityClass::SIDE_RESIDENTIAL,
"alley",
extractor::RoadPriorityClass::ALLEY,
"parking",
extractor::RoadPriorityClass::PARKING,
"link_road",
extractor::RoadPriorityClass::LINK_ROAD,
"unclassified",
extractor::RoadPriorityClass::UNCLASSIFIED,
"bike_path",
extractor::RoadPriorityClass::BIKE_PATH,
"foot_path",

View File

@ -10,7 +10,7 @@ exports.three_test_coordinates = [[7.41337, 43.72956],
exports.two_test_coordinates = exports.three_test_coordinates.slice(0, 2)
exports.test_tile = {'at': [17059, 11948, 15], 'size': 168605};
exports.test_tile = {'at': [17059, 11948, 15], 'size': 168571};
// Test files generated by the routing engine; check test/data
if (process.env.OSRM_DATA_PATH !== undefined) {