Apply clang-format on Contractor/

This commit is contained in:
Patrick Niklaus 2014-05-08 23:07:16 +02:00
parent 79d33d669c
commit d13cd4d4b3
7 changed files with 968 additions and 835 deletions

View File

@ -48,14 +48,28 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <limits>
#include <vector>
class Contractor {
class Contractor
{
private:
struct ContractorEdgeData {
ContractorEdgeData() :
distance(0), id(0), originalEdges(0), shortcut(0), forward(0), backward(0), originalViaNodeID(false) {}
ContractorEdgeData( unsigned _distance, unsigned _originalEdges, unsigned _id, bool _shortcut, bool _forward, bool _backward) :
distance(_distance), id(_id), originalEdges(std::min((unsigned)1<<28, _originalEdges) ), shortcut(_shortcut), forward(_forward), backward(_backward), originalViaNodeID(false) {}
struct ContractorEdgeData
{
ContractorEdgeData()
: distance(0), id(0), originalEdges(0), shortcut(0), forward(0), backward(0),
originalViaNodeID(false)
{
}
ContractorEdgeData(unsigned _distance,
unsigned _originalEdges,
unsigned _id,
bool _shortcut,
bool _forward,
bool _backward)
: distance(_distance), id(_id),
originalEdges(std::min((unsigned)1 << 28, _originalEdges)), shortcut(_shortcut),
forward(_forward), backward(_backward), originalViaNodeID(false)
{
}
unsigned distance;
unsigned id;
unsigned originalEdges : 28;
@ -65,7 +79,8 @@ private:
bool originalViaNodeID : 1;
} data;
struct _HeapData {
struct _HeapData
{
short hop;
bool target;
_HeapData() : hop(0), target(false) {}
@ -77,42 +92,50 @@ private:
typedef BinaryHeap<NodeID, NodeID, int, _HeapData, XORFastHashStorage<NodeID, NodeID>> _Heap;
typedef _DynamicGraph::InputEdge _ContractorEdge;
struct _ThreadData {
struct _ThreadData
{
_Heap heap;
std::vector<_ContractorEdge> insertedEdges;
std::vector<NodeID> neighbours;
_ThreadData(NodeID nodes) : heap(nodes) {}
};
struct _PriorityData {
struct _PriorityData
{
int depth;
_PriorityData() : depth(0) {}
};
struct _ContractionInformation {
struct _ContractionInformation
{
int edgesDeleted;
int edgesAdded;
int originalEdgesDeleted;
int originalEdgesAdded;
_ContractionInformation() : edgesDeleted(0), edgesAdded(0), originalEdgesDeleted(0), originalEdgesAdded(0) {}
_ContractionInformation()
: edgesDeleted(0), edgesAdded(0), originalEdgesDeleted(0), originalEdgesAdded(0)
{
}
};
struct _RemainingNodeData {
struct _RemainingNodeData
{
_RemainingNodeData() : id(0), isIndependent(false) {}
NodeID id : 31;
bool isIndependent : 1;
};
struct _NodePartitionor {
inline bool operator()(_RemainingNodeData & nodeData ) const {
struct _NodePartitionor
{
inline bool operator()(_RemainingNodeData &nodeData) const
{
return !nodeData.isIndependent;
}
};
public:
template<class ContainerT >
Contractor( int nodes, ContainerT& inputEdges) {
template <class ContainerT> Contractor(int nodes, ContainerT &inputEdges)
{
std::vector<_ContractorEdge> edges;
edges.reserve(inputEdges.size() * 2);
temp_edge_counter = 0;
@ -121,15 +144,22 @@ public:
typename ContainerT::deallocation_iterator dend = inputEdges.dend();
_ContractorEdge newEdge;
while(diter!=dend) {
while (diter != dend)
{
newEdge.source = diter->source();
newEdge.target = diter->target();
newEdge.data = ContractorEdgeData( (std::max)((int)diter->weight(), 1 ), 1, diter->id(), false, diter->isForward(), diter->isBackward());
newEdge.data = ContractorEdgeData((std::max)((int)diter->weight(), 1),
1,
diter->id(),
false,
diter->isForward(),
diter->isBackward());
BOOST_ASSERT_MSG(newEdge.data.distance > 0, "edge distance < 1");
#ifndef NDEBUG
if ( newEdge.data.distance > 24 * 60 * 60 * 10 ) {
SimpleLogger().Write(logWARNING) <<
"Edge weight large -> " << newEdge.data.distance;
if (newEdge.data.distance > 24 * 60 * 60 * 10)
{
SimpleLogger().Write(logWARNING) << "Edge weight large -> "
<< newEdge.data.distance;
}
#endif
edges.push_back(newEdge);
@ -143,12 +173,14 @@ public:
inputEdges.clear();
sort(edges.begin(), edges.end());
NodeID edge = 0;
for ( NodeID i = 0; i < edges.size(); ) {
for (NodeID i = 0; i < edges.size();)
{
const NodeID source = edges[i].source;
const NodeID target = edges[i].target;
const NodeID id = edges[i].data.id;
// remove eigenloops
if ( source == target ) {
if (source == target)
{
i++;
continue;
}
@ -161,33 +193,46 @@ public:
forwardEdge.data.shortcut = backwardEdge.data.shortcut = false;
forwardEdge.data.id = backwardEdge.data.id = id;
forwardEdge.data.originalEdges = backwardEdge.data.originalEdges = 1;
forwardEdge.data.distance = backwardEdge.data.distance = std::numeric_limits< int >::max();
forwardEdge.data.distance = backwardEdge.data.distance =
std::numeric_limits<int>::max();
// remove parallel edges
while ( i < edges.size() && edges[i].source == source && edges[i].target == target ) {
if ( edges[i].data.forward) {
forwardEdge.data.distance = std::min( edges[i].data.distance, forwardEdge.data.distance );
while (i < edges.size() && edges[i].source == source && edges[i].target == target)
{
if (edges[i].data.forward)
{
forwardEdge.data.distance =
std::min(edges[i].data.distance, forwardEdge.data.distance);
}
if ( edges[i].data.backward) {
backwardEdge.data.distance = std::min( edges[i].data.distance, backwardEdge.data.distance );
if (edges[i].data.backward)
{
backwardEdge.data.distance =
std::min(edges[i].data.distance, backwardEdge.data.distance);
}
++i;
}
// merge edges (s,t) and (t,s) into bidirectional edge
if ( forwardEdge.data.distance == backwardEdge.data.distance ) {
if ( (int)forwardEdge.data.distance != std::numeric_limits< int >::max() ) {
if (forwardEdge.data.distance == backwardEdge.data.distance)
{
if ((int)forwardEdge.data.distance != std::numeric_limits<int>::max())
{
forwardEdge.data.backward = true;
edges[edge++] = forwardEdge;
}
} else { //insert seperate edges
if ( ((int)forwardEdge.data.distance) != std::numeric_limits< int >::max() ) {
}
else
{ // insert seperate edges
if (((int)forwardEdge.data.distance) != std::numeric_limits<int>::max())
{
edges[edge++] = forwardEdge;
}
if ( (int)backwardEdge.data.distance != std::numeric_limits< int >::max() ) {
if ((int)backwardEdge.data.distance != std::numeric_limits<int>::max())
{
edges[edge++] = backwardEdge;
}
}
}
std::cout << "merged " << edges.size() - edge << " edges out of " << edges.size() << std::endl;
std::cout << "merged " << edges.size() - edge << " edges out of " << edges.size()
<< std::endl;
edges.resize(edge);
_graph = boost::make_shared<_DynamicGraph>(nodes, edges);
edges.clear();
@ -204,9 +249,12 @@ public:
// }
// }
//
// SimpleLogger().Write() << "edges at node with id " << highestNode << " has degree " << maxdegree;
// for(unsigned i = _graph->BeginEdges(highestNode); i < _graph->EndEdges(highestNode); ++i) {
// SimpleLogger().Write() << " ->(" << highestNode << "," << _graph->GetTarget(i) << "); via: " << _graph->GetEdgeData(i).via;
// SimpleLogger().Write() << "edges at node with id " << highestNode << " has degree
// " << maxdegree;
// for(unsigned i = _graph->BeginEdges(highestNode); i <
// _graph->EndEdges(highestNode); ++i) {
// SimpleLogger().Write() << " ->(" << highestNode << "," << _graph->GetTarget(i)
// << "); via: " << _graph->GetEdgeData(i).via;
// }
// Create temporary file
@ -216,19 +264,22 @@ public:
std::cout << "contractor finished initalization" << std::endl;
}
~Contractor() {
~Contractor()
{
// Delete temporary file
// remove(temporaryEdgeStorageFilename.c_str());
TemporaryStorage::GetInstance().DeallocateSlot(edge_storage_slot);
}
void Run() {
void Run()
{
const NodeID numberOfNodes = _graph->GetNumberOfNodes();
Percent p(numberOfNodes);
const unsigned maxThreads = omp_get_max_threads();
std::vector<_ThreadData *> threadData;
for ( unsigned threadNum = 0; threadNum < maxThreads; ++threadNum ) {
for (unsigned threadNum = 0; threadNum < maxThreads; ++threadNum)
{
threadData.push_back(new _ThreadData(numberOfNodes));
}
std::cout << "Contractor is using " << maxThreads << " threads" << std::endl;
@ -240,7 +291,8 @@ public:
// initialize the variables
#pragma omp parallel for schedule(guided)
for ( int x = 0; x < ( int ) numberOfNodes; ++x ) {
for (int x = 0; x < (int)numberOfNodes; ++x)
{
remainingNodes[x].id = x;
}
@ -249,16 +301,22 @@ public:
{
_ThreadData *data = threadData[omp_get_thread_num()];
#pragma omp parallel for schedule(guided)
for ( int x = 0; x < ( int ) numberOfNodes; ++x ) {
for (int x = 0; x < (int)numberOfNodes; ++x)
{
nodePriority[x] = _Evaluate(data, &nodeData[x], x);
}
}
std::cout << "ok" << std::endl << "preprocessing " << numberOfNodes << " nodes ..." << std::flush;
std::cout << "ok" << std::endl << "preprocessing " << numberOfNodes << " nodes ..."
<< std::flush;
bool flushedContractor = false;
while ( numberOfNodes > 2 && numberOfContractedNodes < numberOfNodes ) {
if(!flushedContractor && (numberOfContractedNodes > (numberOfNodes*0.65) ) ){
DeallocatingVector<_ContractorEdge> newSetOfEdges; //this one is not explicitely cleared since it goes out of scope anywa
while (numberOfNodes > 2 && numberOfContractedNodes < numberOfNodes)
{
if (!flushedContractor && (numberOfContractedNodes > (numberOfNodes * 0.65)))
{
DeallocatingVector<_ContractorEdge> newSetOfEdges; // this one is not explicitely
// cleared since it goes out of
// scope anywa
std::cout << " [flush " << numberOfContractedNodes << " nodes] " << std::flush;
//Delete old heap data to free memory that we need for the coming operations
@ -269,13 +327,17 @@ public:
// Create new priority array
std::vector<float> newNodePriority(remainingNodes.size());
//this map gives the old IDs from the new ones, necessary to get a consistent graph at the end of contraction
// this map gives the old IDs from the new ones, necessary to get a consistent graph
// at the end of contraction
oldNodeIDFromNewNodeIDMap.resize(remainingNodes.size());
//this map gives the new IDs from the old ones, necessary to remap targets from the remaining graph
// this map gives the new IDs from the old ones, necessary to remap targets from the
// remaining graph
std::vector<NodeID> newNodeIDFromOldNodeIDMap(numberOfNodes, UINT_MAX);
//build forward and backward renumbering map and remap ids in remainingNodes and Priorities.
for(unsigned newNodeID = 0; newNodeID < remainingNodes.size(); ++newNodeID) {
// build forward and backward renumbering map and remap ids in remainingNodes and
// Priorities.
for (unsigned newNodeID = 0; newNodeID < remainingNodes.size(); ++newNodeID)
{
// create renumbering maps in both directions
oldNodeIDFromNewNodeIDMap[newNodeID] = remainingNodes[newNodeID].id;
newNodeIDFromOldNodeIDMap[remainingNodes[newNodeID].id] = newNodeID;
@ -284,18 +346,28 @@ public:
}
TemporaryStorage &tempStorage = TemporaryStorage::GetInstance();
// walk over all nodes
for(unsigned i = 0; i < _graph->GetNumberOfNodes(); ++i) {
for (unsigned i = 0; i < _graph->GetNumberOfNodes(); ++i)
{
const NodeID start = i;
for(_DynamicGraph::EdgeIterator currentEdge = _graph->BeginEdges(start); currentEdge < _graph->EndEdges(start); ++currentEdge) {
for (_DynamicGraph::EdgeIterator currentEdge = _graph->BeginEdges(start);
currentEdge < _graph->EndEdges(start);
++currentEdge)
{
_DynamicGraph::EdgeData &data = _graph->GetEdgeData(currentEdge);
const NodeID target = _graph->GetTarget(currentEdge);
if(UINT_MAX == newNodeIDFromOldNodeIDMap[i] ){
if (UINT_MAX == newNodeIDFromOldNodeIDMap[i])
{
// Save edges of this node w/o renumbering.
tempStorage.WriteToSlot(edge_storage_slot, (char*)&start, sizeof(NodeID));
tempStorage.WriteToSlot(edge_storage_slot, (char*)&target, sizeof(NodeID));
tempStorage.WriteToSlot(edge_storage_slot, (char*)&data, sizeof(_DynamicGraph::EdgeData));
tempStorage.WriteToSlot(
edge_storage_slot, (char *)&start, sizeof(NodeID));
tempStorage.WriteToSlot(
edge_storage_slot, (char *)&target, sizeof(NodeID));
tempStorage.WriteToSlot(
edge_storage_slot, (char *)&data, sizeof(_DynamicGraph::EdgeData));
++temp_edge_counter;
} else {
}
else
{
// node is not yet contracted.
// add (renumbered) outgoing edges to new DynamicGraph.
_ContractorEdge newEdge;
@ -303,14 +375,10 @@ public:
newEdge.target = newNodeIDFromOldNodeIDMap[target];
newEdge.data = data;
newEdge.data.originalViaNodeID = true;
BOOST_ASSERT_MSG(
UINT_MAX != newNodeIDFromOldNodeIDMap[start],
"new start id not resolveable"
);
BOOST_ASSERT_MSG(
UINT_MAX != newNodeIDFromOldNodeIDMap[target],
"new target id not resolveable"
);
BOOST_ASSERT_MSG(UINT_MAX != newNodeIDFromOldNodeIDMap[start],
"new start id not resolveable");
BOOST_ASSERT_MSG(UINT_MAX != newNodeIDFromOldNodeIDMap[target],
"new target id not resolveable");
newSetOfEdges.push_back(newEdge);
}
}
@ -335,7 +403,8 @@ public:
// INFO: MAKE SURE THIS IS THE LAST OPERATION OF THE FLUSH!
// reinitialize heaps and ThreadData objects with appropriate size
for ( unsigned threadNum = 0; threadNum < maxThreads; ++threadNum ) {
for (unsigned threadNum = 0; threadNum < maxThreads; ++threadNum)
{
threadData.push_back(new _ThreadData(_graph->GetNumberOfNodes()));
}
}
@ -346,20 +415,24 @@ public:
// determine independent node set
_ThreadData *const data = threadData[omp_get_thread_num()];
#pragma omp for schedule(guided)
for ( int i = 0; i < last; ++i ) {
for (int i = 0; i < last; ++i)
{
const NodeID node = remainingNodes[i].id;
remainingNodes[i].isIndependent = _IsIndependent( nodePriority/*, nodeData*/, data, node );
remainingNodes[i].isIndependent =
_IsIndependent(nodePriority /*, nodeData*/, data, node);
}
}
_NodePartitionor functor;
const std::vector < _RemainingNodeData >::const_iterator first = stable_partition( remainingNodes.begin(), remainingNodes.end(), functor );
const std::vector<_RemainingNodeData>::const_iterator first =
stable_partition(remainingNodes.begin(), remainingNodes.end(), functor);
const int firstIndependent = first - remainingNodes.begin();
// contract independent nodes
#pragma omp parallel
{
_ThreadData *data = threadData[omp_get_thread_num()];
#pragma omp for schedule(guided) nowait
for ( int position = firstIndependent ; position < last; ++position ) {
for (int position = firstIndependent; position < last; ++position)
{
NodeID x = remainingNodes[position].id;
_Contract<false>(data, x);
// nodePriority[x] = -1;
@ -371,7 +444,8 @@ public:
{
_ThreadData *data = threadData[omp_get_thread_num()];
#pragma omp for schedule(guided) nowait
for ( int position = firstIndependent ; position < last; ++position ) {
for (int position = firstIndependent; position < last; ++position)
{
NodeID x = remainingNodes[position].id;
_DeleteIncomingEdges(data, x);
}
@ -386,11 +460,12 @@ public:
if(currentEdgeData.shortcut &&
edge.data.forward == currentEdgeData.forward &&
edge.data.backward == currentEdgeData.backward &&
edge.data.distance < currentEdgeData.distance
) {
edge.data.distance < currentEdgeData.distance)
{
// found a duplicate edge with smaller weight, update it.
currentEdgeData = edge.data;
// currentEdgeData.distance = std::min(currentEdgeData.distance, edge.data.distance);
// currentEdgeData.distance = std::min(currentEdgeData.distance,
// edge.data.distance);
continue;
}
}
@ -403,7 +478,8 @@ public:
{
_ThreadData *data = threadData[omp_get_thread_num()];
#pragma omp for schedule(guided) nowait
for ( int position = firstIndependent ; position < last; ++position ) {
for (int position = firstIndependent; position < last; ++position)
{
NodeID x = remainingNodes[position].id;
_UpdateNeighbours(nodePriority, nodeData, data, x);
}
@ -418,7 +494,8 @@ public:
// unsigned quaddegree = 0;
//
// for(unsigned i = 0; i < remainingNodes.size(); ++i) {
// unsigned degree = _graph->EndEdges(remainingNodes[i].first) - _graph->BeginEdges(remainingNodes[i].first);
// unsigned degree = _graph->EndEdges(remainingNodes[i].first) -
// _graph->BeginEdges(remainingNodes[i].first);
// if(degree > maxdegree)
// maxdegree = degree;
// if(degree < mindegree)
@ -431,7 +508,9 @@ public:
// avgdegree /= std::max((unsigned)1,(unsigned)remainingNodes.size() );
// quaddegree /= std::max((unsigned)1,(unsigned)remainingNodes.size() );
//
// SimpleLogger().Write() << "rest: " << remainingNodes.size() << ", max: " << maxdegree << ", min: " << mindegree << ", avg: " << avgdegree << ", quad: " << quaddegree;
// SimpleLogger().Write() << "rest: " << remainingNodes.size() << ", max: "
// << maxdegree << ", min: " << mindegree << ", avg: " << avgdegree << ",
// quad: " << quaddegree;
p.printStatus(numberOfContractedNodes);
}
@ -441,47 +520,48 @@ public:
threadData.clear();
}
template< class Edge >
inline void GetEdges( DeallocatingVector< Edge >& edges ) {
template <class Edge> inline void GetEdges(DeallocatingVector<Edge> &edges)
{
Percent p(_graph->GetNumberOfNodes());
SimpleLogger().Write() << "Getting edges of minimized graph";
NodeID numberOfNodes = _graph->GetNumberOfNodes();
if(_graph->GetNumberOfNodes()) {
if (_graph->GetNumberOfNodes())
{
Edge newEdge;
for ( NodeID node = 0; node < numberOfNodes; ++node ) {
for (NodeID node = 0; node < numberOfNodes; ++node)
{
p.printStatus(node);
for ( _DynamicGraph::EdgeIterator edge = _graph->BeginEdges( node ), endEdges = _graph->EndEdges( node ); edge < endEdges; ++edge ) {
for (_DynamicGraph::EdgeIterator edge = _graph->BeginEdges(node),
endEdges = _graph->EndEdges(node);
edge < endEdges;
++edge)
{
const NodeID target = _graph->GetTarget(edge);
const _DynamicGraph::EdgeData &data = _graph->GetEdgeData(edge);
if( !oldNodeIDFromNewNodeIDMap.empty() ) {
if (!oldNodeIDFromNewNodeIDMap.empty())
{
newEdge.source = oldNodeIDFromNewNodeIDMap[node];
newEdge.target = oldNodeIDFromNewNodeIDMap[target];
} else {
}
else
{
newEdge.source = node;
newEdge.target = target;
}
BOOST_ASSERT_MSG(
UINT_MAX != newEdge.source,
"Source id invalid"
);
BOOST_ASSERT_MSG(
UINT_MAX != newEdge.target,
"Target id invalid"
);
BOOST_ASSERT_MSG(UINT_MAX != newEdge.source, "Source id invalid");
BOOST_ASSERT_MSG(UINT_MAX != newEdge.target, "Target id invalid");
newEdge.data.distance = data.distance;
newEdge.data.shortcut = data.shortcut;
if(
!data.originalViaNodeID &&
!oldNodeIDFromNewNodeIDMap.empty()
) {
if (!data.originalViaNodeID && !oldNodeIDFromNewNodeIDMap.empty())
{
newEdge.data.id = oldNodeIDFromNewNodeIDMap[data.id];
} else {
}
else
{
newEdge.data.id = data.id;
}
BOOST_ASSERT_MSG(
newEdge.data.id != INT_MAX, //2^31
"edge id invalid"
);
BOOST_ASSERT_MSG(newEdge.data.id != INT_MAX, // 2^31
"edge id invalid");
newEdge.data.forward = data.forward;
newEdge.data.backward = data.backward;
edges.push_back(newEdge);
@ -499,10 +579,12 @@ public:
_DynamicGraph::EdgeData data;
Edge restored_edge;
for(unsigned i = 0; i < temp_edge_counter; ++i) {
for (unsigned i = 0; i < temp_edge_counter; ++i)
{
tempStorage.ReadFromSlot(edge_storage_slot, (char *)&start, sizeof(NodeID));
tempStorage.ReadFromSlot(edge_storage_slot, (char *)&target, sizeof(NodeID));
tempStorage.ReadFromSlot(edge_storage_slot, (char*)&data, sizeof(_DynamicGraph::EdgeData));
tempStorage.ReadFromSlot(
edge_storage_slot, (char *)&data, sizeof(_DynamicGraph::EdgeData));
restored_edge.source = start;
restored_edge.target = target;
restored_edge.data.distance = data.distance;
@ -516,13 +598,19 @@ public:
}
private:
inline void _Dijkstra( const int maxDistance, const unsigned numTargets, const int maxNodes, _ThreadData* const data, const NodeID middleNode ){
inline void _Dijkstra(const int maxDistance,
const unsigned numTargets,
const int maxNodes,
_ThreadData *const data,
const NodeID middleNode)
{
_Heap &heap = data->heap;
int nodes = 0;
unsigned targetsFound = 0;
while ( heap.Size() > 0 ) {
while (heap.Size() > 0)
{
const NodeID node = heap.DeleteMin();
const int distance = heap.GetKey(node);
const short currentHop = heap.GetData(node).hop + 1;
@ -533,31 +621,41 @@ private:
if (distance > maxDistance)
return;
if ( heap.GetData( node ).target ) {
if (heap.GetData(node).target)
{
++targetsFound;
if ( targetsFound >= numTargets ) {
if (targetsFound >= numTargets)
{
return;
}
}
// iterate over all edges of node
for ( _DynamicGraph::EdgeIterator edge = _graph->BeginEdges( node ), endEdges = _graph->EndEdges( node ); edge != endEdges; ++edge ) {
for (_DynamicGraph::EdgeIterator edge = _graph->BeginEdges(node),
endEdges = _graph->EndEdges(node);
edge != endEdges;
++edge)
{
const ContractorEdgeData &data = _graph->GetEdgeData(edge);
if ( !data.forward ){
if (!data.forward)
{
continue;
}
const NodeID to = _graph->GetTarget(edge);
if(middleNode == to) {
if (middleNode == to)
{
continue;
}
const int toDistance = distance + data.distance;
// New Node discovered -> Add to Heap + Node Info Storage
if ( !heap.WasInserted( to ) ) {
if (!heap.WasInserted(to))
{
heap.Insert(to, toDistance, _HeapData(currentHop, false));
}
// Found a shorter Path -> Update distance
else if ( toDistance < heap.GetKey( to ) ) {
else if (toDistance < heap.GetKey(to))
{
heap.DecreaseKey(to, toDistance);
heap.GetData(to).hop = currentHop;
}
@ -565,7 +663,9 @@ private:
}
}
inline float _Evaluate( _ThreadData* const data, _PriorityData* const nodeData, const NodeID node){
inline float
_Evaluate(_ThreadData *const data, _PriorityData *const nodeData, const NodeID node)
{
_ContractionInformation stats;
// perform simulated contraction
@ -576,21 +676,29 @@ private:
if (0 == (stats.edgesDeleted * stats.originalEdgesDeleted))
result = 1 * nodeData->depth;
else
result = 2 * ((( float ) stats.edgesAdded ) / stats.edgesDeleted ) + 4 * ((( float ) stats.originalEdgesAdded ) / stats.originalEdgesDeleted ) + 1 * nodeData->depth;
result = 2 * (((float)stats.edgesAdded) / stats.edgesDeleted) +
4 * (((float)stats.originalEdgesAdded) / stats.originalEdgesDeleted) +
1 * nodeData->depth;
assert(result >= 0);
return result;
}
template <bool Simulate>
inline bool _Contract( _ThreadData* data, NodeID node, _ContractionInformation* stats = NULL ) {
inline bool _Contract(_ThreadData *data, NodeID node, _ContractionInformation *stats = NULL)
{
_Heap &heap = data->heap;
int insertedEdgesSize = data->insertedEdges.size();
std::vector<_ContractorEdge> &insertedEdges = data->insertedEdges;
for ( _DynamicGraph::EdgeIterator inEdge = _graph->BeginEdges( node ), endInEdges = _graph->EndEdges( node ); inEdge != endInEdges; ++inEdge ) {
for (_DynamicGraph::EdgeIterator inEdge = _graph->BeginEdges(node),
endInEdges = _graph->EndEdges(node);
inEdge != endInEdges;
++inEdge)
{
const ContractorEdgeData &inData = _graph->GetEdgeData(inEdge);
const NodeID source = _graph->GetTarget(inEdge);
if ( Simulate ) {
if (Simulate)
{
assert(stats != NULL);
++stats->edgesDeleted;
stats->originalEdgesDeleted += inData.originalEdges;
@ -603,43 +711,69 @@ private:
int maxDistance = 0;
unsigned numTargets = 0;
for ( _DynamicGraph::EdgeIterator outEdge = _graph->BeginEdges( node ), endOutEdges = _graph->EndEdges( node ); outEdge != endOutEdges; ++outEdge ) {
for (_DynamicGraph::EdgeIterator outEdge = _graph->BeginEdges(node),
endOutEdges = _graph->EndEdges(node);
outEdge != endOutEdges;
++outEdge)
{
const ContractorEdgeData &outData = _graph->GetEdgeData(outEdge);
if ( !outData.forward ) {
if (!outData.forward)
{
continue;
}
const NodeID target = _graph->GetTarget(outEdge);
const int pathDistance = inData.distance + outData.distance;
maxDistance = std::max(maxDistance, pathDistance);
if ( !heap.WasInserted( target ) ) {
if (!heap.WasInserted(target))
{
heap.Insert(target, INT_MAX, _HeapData(0, true));
++numTargets;
}
}
if( Simulate ) {
if (Simulate)
{
_Dijkstra(maxDistance, numTargets, 1000, data, node);
} else {
}
else
{
_Dijkstra(maxDistance, numTargets, 2000, data, node);
}
for ( _DynamicGraph::EdgeIterator outEdge = _graph->BeginEdges( node ), endOutEdges = _graph->EndEdges( node ); outEdge != endOutEdges; ++outEdge ) {
for (_DynamicGraph::EdgeIterator outEdge = _graph->BeginEdges(node),
endOutEdges = _graph->EndEdges(node);
outEdge != endOutEdges;
++outEdge)
{
const ContractorEdgeData &outData = _graph->GetEdgeData(outEdge);
if ( !outData.forward ) {
if (!outData.forward)
{
continue;
}
const NodeID target = _graph->GetTarget(outEdge);
const int pathDistance = inData.distance + outData.distance;
const int distance = heap.GetKey(target);
if ( pathDistance < distance ) {
if ( Simulate ) {
if (pathDistance < distance)
{
if (Simulate)
{
assert(stats != NULL);
stats->edgesAdded += 2;
stats->originalEdgesAdded += 2* ( outData.originalEdges + inData.originalEdges );
} else {
stats->originalEdgesAdded +=
2 * (outData.originalEdges + inData.originalEdges);
}
else
{
_ContractorEdge newEdge;
newEdge.source = source;
newEdge.target = target;
newEdge.data = ContractorEdgeData( pathDistance, outData.originalEdges + inData.originalEdges, node/*, 0, inData.turnInstruction*/, true, true, false);;
newEdge.data =
ContractorEdgeData(pathDistance,
outData.originalEdges + inData.originalEdges,
node /*, 0, inData.turnInstruction*/,
true,
true,
false);
;
insertedEdges.push_back(newEdge);
std::swap(newEdge.source, newEdge.target);
newEdge.data.forward = false;
@ -649,10 +783,13 @@ private:
}
}
}
if ( !Simulate ) {
for ( int i = insertedEdgesSize, iend = insertedEdges.size(); i < iend; ++i ) {
if (!Simulate)
{
for (int i = insertedEdgesSize, iend = insertedEdges.size(); i < iend; ++i)
{
bool found = false;
for ( int other = i + 1 ; other < iend ; ++other ) {
for (int other = i + 1; other < iend; ++other)
{
if (insertedEdges[other].source != insertedEdges[i].source)
continue;
if (insertedEdges[other].target != insertedEdges[i].target)
@ -675,12 +812,15 @@ private:
return true;
}
inline void _DeleteIncomingEdges( _ThreadData* data, const NodeID node ) {
inline void _DeleteIncomingEdges(_ThreadData *data, const NodeID node)
{
std::vector<NodeID> &neighbours = data->neighbours;
neighbours.clear();
// find all neighbours
for ( _DynamicGraph::EdgeIterator e = _graph->BeginEdges( node ) ; e < _graph->EndEdges( node ) ; ++e ) {
for (_DynamicGraph::EdgeIterator e = _graph->BeginEdges(node); e < _graph->EndEdges(node);
++e)
{
const NodeID u = _graph->GetTarget(e);
if (u != node)
neighbours.push_back(u);
@ -689,17 +829,26 @@ private:
std::sort(neighbours.begin(), neighbours.end());
neighbours.resize(std::unique(neighbours.begin(), neighbours.end()) - neighbours.begin());
for ( int i = 0, e = ( int ) neighbours.size(); i < e; ++i ) {
for (int i = 0, e = (int)neighbours.size(); i < e; ++i)
{
_graph->DeleteEdgesTo(neighbours[i], node);
}
}
inline bool _UpdateNeighbours( std::vector< float > & priorities, std::vector< _PriorityData > & nodeData, _ThreadData* const data, const NodeID node) {
inline bool _UpdateNeighbours(std::vector<float> &priorities,
std::vector<_PriorityData> &nodeData,
_ThreadData *const data,
const NodeID node)
{
std::vector<NodeID> &neighbours = data->neighbours;
neighbours.clear();
// find all neighbours
for ( _DynamicGraph::EdgeIterator e = _graph->BeginEdges( node ), endEdges = _graph->EndEdges( node ) ; e < endEdges ; ++e ) {
for (_DynamicGraph::EdgeIterator e = _graph->BeginEdges(node),
endEdges = _graph->EndEdges(node);
e < endEdges;
++e)
{
const NodeID u = _graph->GetTarget(e);
if (u == node)
continue;
@ -716,13 +865,19 @@ private:
return true;
}
inline bool _IsIndependent( const std::vector< float >& priorities/*, const std::vector< _PriorityData >& nodeData*/, _ThreadData* const data, NodeID node ) const {
inline bool _IsIndependent(
const std::vector<float> &priorities /*, const std::vector< _PriorityData >& nodeData*/,
_ThreadData *const data,
NodeID node) const
{
const double priority = priorities[node];
std::vector<NodeID> &neighbours = data->neighbours;
neighbours.clear();
for ( _DynamicGraph::EdgeIterator e = _graph->BeginEdges( node ) ; e < _graph->EndEdges( node ) ; ++e ) {
for (_DynamicGraph::EdgeIterator e = _graph->BeginEdges(node); e < _graph->EndEdges(node);
++e)
{
const NodeID target = _graph->GetTarget(e);
if (node == target)
continue;
@ -732,7 +887,9 @@ private:
if (priority > targetPriority)
return false;
// tie breaking
if ( std::abs(priority - targetPriority) < std::numeric_limits<double>::epsilon() && bias(node, target) ) {
if (std::abs(priority - targetPriority) < std::numeric_limits<double>::epsilon() &&
bias(node, target))
{
return false;
}
// TODO: C++11 copy_if with lambda
@ -743,13 +900,14 @@ private:
neighbours.resize(std::unique(neighbours.begin(), neighbours.end()) - neighbours.begin());
// examine all neighbours that are at most 2 hops away
for(const NodeID u : neighbours) {
for ( _DynamicGraph::EdgeIterator e = _graph->BeginEdges( u ) ; e < _graph->EndEdges( u ) ; ++e ) {
for(const NodeID u : neighbours)
{
for (_DynamicGraph::EdgeIterator e = _graph->BeginEdges(u); e < _graph->EndEdges(u);
++e)
{
const NodeID target = _graph->GetTarget(e);
if (node == target)
{
continue;
}
const double targetPriority = priorities[target];
assert( targetPriority >= 0 );
@ -769,11 +927,13 @@ private:
/**
* This bias function takes up 22 assembly instructions in total on X86
*/
inline bool bias(const NodeID a, const NodeID b) const {
inline bool bias(const NodeID a, const NodeID b) const
{
unsigned short hasha = fastHash(a);
unsigned short hashb = fastHash(b);
//The compiler optimizes that to conditional register flags but without branching statements!
// The compiler optimizes that to conditional register flags but without branching
// statements!
if (hasha != hashb)
return hasha < hashb;
return a < b;

View File

@ -25,7 +25,6 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "EdgeBasedGraphFactory.h"
#include "../Util/ComputeAngle.h"
#include "../DataStructures/BFSComponentExplorer.h"
@ -44,42 +43,30 @@ EdgeBasedGraphFactory::EdgeBasedGraphFactory(
std::vector<NodeID> &barrier_node_list,
std::vector<NodeID> &traffic_light_node_list,
std::vector<NodeInfo> &m_node_info_list,
SpeedProfileProperties & speed_profile
) : speed_profile(speed_profile),
SpeedProfileProperties &speed_profile)
: speed_profile(speed_profile),
m_number_of_edge_based_nodes(std::numeric_limits<unsigned>::max()),
m_node_info_list(m_node_info_list),
m_node_based_graph(node_based_graph),
m_restriction_map(std::move(restriction_map)),
max_id(0)
m_node_info_list(m_node_info_list), m_node_based_graph(node_based_graph),
m_restriction_map(std::move(restriction_map)), max_id(0)
{
// insert into unordered sets for fast lookup
m_barrier_nodes.insert(
barrier_node_list.begin(),
barrier_node_list.end()
);
m_traffic_lights.insert(
traffic_light_node_list.begin(),
traffic_light_node_list.end()
);
m_barrier_nodes.insert(barrier_node_list.begin(), barrier_node_list.end());
m_traffic_lights.insert(traffic_light_node_list.begin(), traffic_light_node_list.end());
}
void EdgeBasedGraphFactory::GetEdgeBasedEdges(
DeallocatingVector< EdgeBasedEdge >& output_edge_list
) {
BOOST_ASSERT_MSG(
0 == output_edge_list.size(),
"Vector is not empty"
);
void EdgeBasedGraphFactory::GetEdgeBasedEdges(DeallocatingVector<EdgeBasedEdge> &output_edge_list)
{
BOOST_ASSERT_MSG(0 == output_edge_list.size(), "Vector is not empty");
m_edge_based_edge_list.swap(output_edge_list);
}
void EdgeBasedGraphFactory::GetEdgeBasedNodes( std::vector<EdgeBasedNode> & nodes) {
void EdgeBasedGraphFactory::GetEdgeBasedNodes(std::vector<EdgeBasedNode> &nodes)
{
#ifndef NDEBUG
BOOST_FOREACH(const EdgeBasedNode & node, m_edge_based_node_list){
BOOST_FOREACH (const EdgeBasedNode &node, m_edge_based_node_list)
{
BOOST_ASSERT(m_node_info_list.at(node.u).lat != INT_MAX);
BOOST_ASSERT(m_node_info_list.at(node.u).lon != INT_MAX);
@ -90,13 +77,11 @@ void EdgeBasedGraphFactory::GetEdgeBasedNodes( std::vector<EdgeBasedNode> & node
nodes.swap(m_edge_based_node_list);
}
void EdgeBasedGraphFactory::InsertEdgeBasedNode(
NodeIterator u,
void EdgeBasedGraphFactory::InsertEdgeBasedNode(NodeIterator u,
NodeIterator v,
EdgeIterator e1,
bool belongs_to_tiny_cc
) {
bool belongs_to_tiny_cc)
{
// merge edges together into one EdgeBasedNode
BOOST_ASSERT(u != SPECIAL_NODEID);
BOOST_ASSERT(v != SPECIAL_NODEID);
@ -115,7 +100,8 @@ void EdgeBasedGraphFactory::InsertEdgeBasedNode(
const EdgeID e2 = m_node_based_graph->FindEdge(v, u);
#ifndef NDEBUG
if ( e2 == m_node_based_graph->EndEdges(v) ) {
if (e2 == m_node_based_graph->EndEdges(v))
{
SimpleLogger().Write(logWARNING) << "Did not find edge (" << v << "," << u << ")";
}
#endif
@ -123,21 +109,24 @@ void EdgeBasedGraphFactory::InsertEdgeBasedNode(
BOOST_ASSERT(e2 < m_node_based_graph->EndEdges(v));
const EdgeData &reverse_data = m_node_based_graph->GetEdgeData(e2);
if(
forward_data.edgeBasedNodeID == SPECIAL_NODEID &&
reverse_data.edgeBasedNodeID == SPECIAL_NODEID
) {
if (forward_data.edgeBasedNodeID == SPECIAL_NODEID &&
reverse_data.edgeBasedNodeID == SPECIAL_NODEID)
{
return;
}
BOOST_ASSERT( m_geometry_compressor.HasEntryForID(e1) == m_geometry_compressor.HasEntryForID(e2) );
if( m_geometry_compressor.HasEntryForID(e1) ) {
BOOST_ASSERT(m_geometry_compressor.HasEntryForID(e1) ==
m_geometry_compressor.HasEntryForID(e2));
if (m_geometry_compressor.HasEntryForID(e1))
{
BOOST_ASSERT(m_geometry_compressor.HasEntryForID(e2));
// reconstruct geometry and put in each individual edge with its offset
const std::vector<GeometryCompressor::CompressedNode> & forward_geometry = m_geometry_compressor.GetBucketReference(e1);
const std::vector<GeometryCompressor::CompressedNode> & reverse_geometry = m_geometry_compressor.GetBucketReference(e2);
const std::vector<GeometryCompressor::CompressedNode> &forward_geometry =
m_geometry_compressor.GetBucketReference(e1);
const std::vector<GeometryCompressor::CompressedNode> &reverse_geometry =
m_geometry_compressor.GetBucketReference(e2);
BOOST_ASSERT(forward_geometry.size() == reverse_geometry.size());
BOOST_ASSERT(0 != forward_geometry.size());
@ -159,7 +148,8 @@ void EdgeBasedGraphFactory::InsertEdgeBasedNode(
}
temp_sum = 0;
for( unsigned i = 0; i < reverse_geometry.size(); ++i ) {
for (unsigned i = 0; i < reverse_geometry.size(); ++i)
{
temp_sum += reverse_geometry[reverse_geometry.size() - 1 - i].second;
reverse_dist_prefix_sum[i] = reverse_data.distance - temp_sum;
BOOST_ASSERT(reverse_data.distance >= temp_sum);
@ -181,15 +171,16 @@ void EdgeBasedGraphFactory::InsertEdgeBasedNode(
}
// traverse arrays from start and end respectively
for( unsigned i = 0; i < geometry_size; ++i ) {
BOOST_ASSERT( current_edge_start_coordinate_id == reverse_geometry[geometry_size-1-i].first );
for (unsigned i = 0; i < geometry_size; ++i)
{
BOOST_ASSERT(current_edge_start_coordinate_id ==
reverse_geometry[geometry_size - 1 - i].first);
const NodeID current_edge_target_coordinate_id = forward_geometry[i].first;
BOOST_ASSERT(current_edge_target_coordinate_id != current_edge_start_coordinate_id);
// build edges
m_edge_based_node_list.emplace_back(
EdgeBasedNode(
forward_data.edgeBasedNodeID,
EdgeBasedNode(forward_data.edgeBasedNodeID,
reverse_data.edgeBasedNodeID,
current_edge_start_coordinate_id,
current_edge_target_coordinate_id,
@ -200,51 +191,46 @@ void EdgeBasedGraphFactory::InsertEdgeBasedNode(
reverse_dist_prefix_sum[i],
m_geometry_compressor.GetPositionForID(e1),
i,
belongs_to_tiny_cc
)
);
belongs_to_tiny_cc));
current_edge_start_coordinate_id = current_edge_target_coordinate_id;
BOOST_ASSERT(m_edge_based_node_list.back().IsCompressed());
BOOST_ASSERT(
u != m_edge_based_node_list.back().u ||
v != m_edge_based_node_list.back().v
);
BOOST_ASSERT(u != m_edge_based_node_list.back().u ||
v != m_edge_based_node_list.back().v);
BOOST_ASSERT(
u != m_edge_based_node_list.back().v ||
v != m_edge_based_node_list.back().u
);
BOOST_ASSERT(u != m_edge_based_node_list.back().v ||
v != m_edge_based_node_list.back().u);
}
BOOST_ASSERT(current_edge_start_coordinate_id == v);
BOOST_ASSERT(m_edge_based_node_list.back().IsCompressed());
} else {
}
else
{
BOOST_ASSERT(!m_geometry_compressor.HasEntryForID(e2));
if( forward_data.edgeBasedNodeID != SPECIAL_NODEID ) {
if (forward_data.edgeBasedNodeID != SPECIAL_NODEID)
{
BOOST_ASSERT(forward_data.forward);
}
if( reverse_data.edgeBasedNodeID != SPECIAL_NODEID ) {
if (reverse_data.edgeBasedNodeID != SPECIAL_NODEID)
{
BOOST_ASSERT(reverse_data.forward);
}
if( forward_data.edgeBasedNodeID == SPECIAL_NODEID ) {
if (forward_data.edgeBasedNodeID == SPECIAL_NODEID)
{
BOOST_ASSERT(!forward_data.forward);
}
if( reverse_data.edgeBasedNodeID == SPECIAL_NODEID ) {
if (reverse_data.edgeBasedNodeID == SPECIAL_NODEID)
{
BOOST_ASSERT(!reverse_data.forward);
}
BOOST_ASSERT(
forward_data.edgeBasedNodeID != SPECIAL_NODEID ||
reverse_data.edgeBasedNodeID != SPECIAL_NODEID
);
BOOST_ASSERT(forward_data.edgeBasedNodeID != SPECIAL_NODEID ||
reverse_data.edgeBasedNodeID != SPECIAL_NODEID);
m_edge_based_node_list.emplace_back(
EdgeBasedNode(
forward_data.edgeBasedNodeID,
m_edge_based_node_list.emplace_back(EdgeBasedNode(forward_data.edgeBasedNodeID,
reverse_data.edgeBasedNodeID,
u,
v,
@ -255,30 +241,23 @@ void EdgeBasedGraphFactory::InsertEdgeBasedNode(
0,
SPECIAL_EDGEID,
0,
belongs_to_tiny_cc
)
);
belongs_to_tiny_cc));
BOOST_ASSERT(!m_edge_based_node_list.back().IsCompressed());
}
}
void EdgeBasedGraphFactory::FlushVectorToStream(
std::ofstream & edge_data_file,
std::vector<OriginalEdgeData> & original_edge_data_vector
) const {
edge_data_file.write(
(char*)&(original_edge_data_vector[0]),
original_edge_data_vector.size()*sizeof(OriginalEdgeData)
);
std::ofstream &edge_data_file, std::vector<OriginalEdgeData> &original_edge_data_vector) const
{
edge_data_file.write((char *)&(original_edge_data_vector[0]),
original_edge_data_vector.size() * sizeof(OriginalEdgeData));
original_edge_data_vector.clear();
}
void EdgeBasedGraphFactory::Run(
const std::string & original_edge_data_filename,
void EdgeBasedGraphFactory::Run(const std::string &original_edge_data_filename,
const std::string &geometry_filename,
lua_State *lua_state
) {
lua_State *lua_state)
{
CompressGeometry();
@ -289,7 +268,6 @@ void EdgeBasedGraphFactory::Run(
GenerateEdgeExpandedEdges(original_edge_data_filename, lua_state);
m_geometry_compressor.SerializeInternalVector(geometry_filename);
}
void EdgeBasedGraphFactory::CompressGeometry()
@ -302,20 +280,24 @@ void EdgeBasedGraphFactory::CompressGeometry()
Percent p(original_number_of_nodes);
unsigned removed_node_count = 0;
for( NodeID v = 0; v < original_number_of_nodes; ++v ) {
for (NodeID v = 0; v < original_number_of_nodes; ++v)
{
p.printStatus(v);
// only contract degree 2 vertices
if( 2 != m_node_based_graph->GetOutDegree(v) ) {
if (2 != m_node_based_graph->GetOutDegree(v))
{
continue;
}
// don't contract barrier node
if( m_barrier_nodes.end() != m_barrier_nodes.find(v) ) {
if (m_barrier_nodes.end() != m_barrier_nodes.find(v))
{
continue;
}
const bool reverse_edge_order = !(m_node_based_graph->GetEdgeData(m_node_based_graph->BeginEdges(v)).forward);
const bool reverse_edge_order =
!(m_node_based_graph->GetEdgeData(m_node_based_graph->BeginEdges(v)).forward);
const EdgeIterator forward_e2 = m_node_based_graph->BeginEdges(v) + reverse_edge_order;
BOOST_ASSERT(SPECIAL_EDGEID != forward_e2);
const EdgeIterator reverse_e2 = m_node_based_graph->BeginEdges(v) + 1 - reverse_edge_order;
@ -342,17 +324,15 @@ void EdgeBasedGraphFactory::CompressGeometry()
const EdgeData &fwd_edge_data1 = m_node_based_graph->GetEdgeData(forward_e1);
const EdgeData &rev_edge_data1 = m_node_based_graph->GetEdgeData(reverse_e1);
if(
( m_node_based_graph->FindEdge(u, w) != m_node_based_graph->EndEdges(u) ) ||
( m_node_based_graph->FindEdge(w, u) != m_node_based_graph->EndEdges(w) )
) {
if ((m_node_based_graph->FindEdge(u, w) != m_node_based_graph->EndEdges(u)) ||
(m_node_based_graph->FindEdge(w, u) != m_node_based_graph->EndEdges(w)))
{
continue;
}
if ( // TODO: rename to IsCompatibleTo
fwd_edge_data1.IsEqualTo(fwd_edge_data2) &&
rev_edge_data1.IsEqualTo(rev_edge_data2)
) {
fwd_edge_data1.IsEqualTo(fwd_edge_data2) && rev_edge_data1.IsEqualTo(rev_edge_data2))
{
// Get distances before graph is modified
const int forward_weight1 = m_node_based_graph->GetEdgeData(forward_e1).distance;
const int forward_weight2 = m_node_based_graph->GetEdgeData(forward_e2).distance;
@ -366,15 +346,18 @@ void EdgeBasedGraphFactory::CompressGeometry()
BOOST_ASSERT(0 != reverse_weight1);
BOOST_ASSERT(0 != forward_weight2);
const bool add_traffic_signal_penalty = (m_traffic_lights.find(v) != m_traffic_lights.end());
const bool add_traffic_signal_penalty =
(m_traffic_lights.find(v) != m_traffic_lights.end());
// add weight of e2's to e1
m_node_based_graph->GetEdgeData(forward_e1).distance += fwd_edge_data2.distance;
m_node_based_graph->GetEdgeData(reverse_e1).distance += rev_edge_data2.distance;
if (add_traffic_signal_penalty)
{
m_node_based_graph->GetEdgeData(forward_e1).distance += speed_profile.trafficSignalPenalty;
m_node_based_graph->GetEdgeData(reverse_e1).distance += speed_profile.trafficSignalPenalty;
m_node_based_graph->GetEdgeData(forward_e1).distance +=
speed_profile.trafficSignalPenalty;
m_node_based_graph->GetEdgeData(reverse_e1).distance +=
speed_profile.trafficSignalPenalty;
}
// extend e1's to targets of e2's
@ -398,24 +381,21 @@ void EdgeBasedGraphFactory::CompressGeometry()
forward_e2,
v,
w,
forward_weight1 + (add_traffic_signal_penalty ? speed_profile.trafficSignalPenalty :0),
forward_weight2
);
forward_weight1 +
(add_traffic_signal_penalty ? speed_profile.trafficSignalPenalty : 0),
forward_weight2);
m_geometry_compressor.CompressEdge(
reverse_e1,
reverse_e2,
v,
u,
reverse_weight1,
reverse_weight2 + (add_traffic_signal_penalty ? speed_profile.trafficSignalPenalty :0)
);
reverse_weight2 +
(add_traffic_signal_penalty ? speed_profile.trafficSignalPenalty : 0));
++removed_node_count;
BOOST_ASSERT
(
m_node_based_graph->GetEdgeData(forward_e1).nameID ==
m_node_based_graph->GetEdgeData(reverse_e1).nameID
);
BOOST_ASSERT(m_node_based_graph->GetEdgeData(forward_e1).nameID ==
m_node_based_graph->GetEdgeData(reverse_e1).nameID);
}
}
SimpleLogger().Write() << "removed " << removed_node_count << " nodes";
@ -423,15 +403,19 @@ void EdgeBasedGraphFactory::CompressGeometry()
unsigned new_node_count = 0;
unsigned new_edge_count = 0;
for( unsigned i = 0; i < m_node_based_graph->GetNumberOfNodes(); ++i ) {
if( m_node_based_graph->GetOutDegree(i) > 0 ) {
for (unsigned i = 0; i < m_node_based_graph->GetNumberOfNodes(); ++i)
{
if (m_node_based_graph->GetOutDegree(i) > 0)
{
++new_node_count;
new_edge_count += (m_node_based_graph->EndEdges(i) - m_node_based_graph->BeginEdges(i));
}
}
SimpleLogger().Write() << "new nodes: " << new_node_count << ", edges " << new_edge_count;
SimpleLogger().Write() << "Node compression ratio: " << new_node_count/(double)original_number_of_nodes;
SimpleLogger().Write() << "Edge compression ratio: " << new_edge_count/(double)original_number_of_edges;
SimpleLogger().Write() << "Node compression ratio: "
<< new_node_count / (double)original_number_of_nodes;
SimpleLogger().Write() << "Edge compression ratio: "
<< new_edge_count / (double)original_number_of_edges;
}
/**
@ -441,10 +425,16 @@ void EdgeBasedGraphFactory::RenumberEdges()
{
// renumber edge based node IDs
unsigned numbered_edges_count = 0;
for(NodeID current_node = 0; current_node < m_node_based_graph->GetNumberOfNodes(); ++current_node) {
for(EdgeIterator current_edge = m_node_based_graph->BeginEdges(current_node); current_edge < m_node_based_graph->EndEdges(current_node); ++current_edge) {
for (NodeID current_node = 0; current_node < m_node_based_graph->GetNumberOfNodes();
++current_node)
{
for (EdgeIterator current_edge = m_node_based_graph->BeginEdges(current_node);
current_edge < m_node_based_graph->EndEdges(current_node);
++current_edge)
{
EdgeData &edge_data = m_node_based_graph->GetEdgeData(current_edge);
if( !edge_data.forward ) {
if (!edge_data.forward)
{
continue;
}
@ -468,36 +458,30 @@ void EdgeBasedGraphFactory::GenerateEdgeExpandedNodes()
// Run a BFS on the undirected graph and identify small components
BFSComponentExplorer<NodeBasedDynamicGraph> component_explorer(
*m_node_based_graph,
*m_restriction_map,
m_barrier_nodes
);
*m_node_based_graph, *m_restriction_map, m_barrier_nodes);
component_explorer.run();
SimpleLogger().Write() <<
"identified: " << component_explorer.getNumberOfComponents() << " many components";
SimpleLogger().Write() << "identified: " << component_explorer.getNumberOfComponents()
<< " many components";
SimpleLogger().Write() << "generating edge-expanded nodes";
Percent p(m_node_based_graph->GetNumberOfNodes());
// loop over all edges and generate new set of nodes
for(
NodeIterator u = 0, end = m_node_based_graph->GetNumberOfNodes();
u < end;
++u
) {
for (NodeIterator u = 0, end = m_node_based_graph->GetNumberOfNodes(); u < end; ++u)
{
BOOST_ASSERT(u != SPECIAL_NODEID);
BOOST_ASSERT(u < m_node_based_graph->GetNumberOfNodes());
p.printIncrement();
for(
EdgeID e1 = m_node_based_graph->BeginEdges(u),
for (EdgeID e1 = m_node_based_graph->BeginEdges(u),
last_edge = m_node_based_graph->EndEdges(u);
e1 < last_edge;
++e1
) {
++e1)
{
const EdgeData &edge_data = m_node_based_graph->GetEdgeData(e1);
if( edge_data.edgeBasedNodeID == SPECIAL_NODEID ) {
if (edge_data.edgeBasedNodeID == SPECIAL_NODEID)
{
// continue;
}
BOOST_ASSERT(e1 != SPECIAL_EDGEID);
@ -505,7 +489,8 @@ void EdgeBasedGraphFactory::GenerateEdgeExpandedNodes()
BOOST_ASSERT(SPECIAL_NODEID != v);
// pick only every other edge
if( u > v ) {
if (u > v)
{
continue;
}
@ -514,41 +499,34 @@ void EdgeBasedGraphFactory::GenerateEdgeExpandedNodes()
// Note: edges that end on barrier nodes or on a turn restriction
// may actually be in two distinct components. We choose the smallest
const unsigned size_of_component = std::min(
component_explorer.getComponentSize(u),
component_explorer.getComponentSize(v)
);
const unsigned size_of_component = std::min(component_explorer.getComponentSize(u),
component_explorer.getComponentSize(v));
const bool component_is_tiny = (size_of_component < 1000);
InsertEdgeBasedNode(u, v, e1, component_is_tiny);
}
}
SimpleLogger().Write() << "Generated " << m_edge_based_node_list.size() <<
" nodes in edge-expanded graph";
SimpleLogger().Write() << "Generated " << m_edge_based_node_list.size()
<< " nodes in edge-expanded graph";
}
/**
* Actually it also generates OriginalEdgeData and serializes them...
*/
void EdgeBasedGraphFactory::GenerateEdgeExpandedEdges(const std::string& original_edge_data_filename, lua_State* lua_state)
void
EdgeBasedGraphFactory::GenerateEdgeExpandedEdges(const std::string &original_edge_data_filename,
lua_State *lua_state)
{
SimpleLogger().Write() << "generating edge-expanded edges";
unsigned node_based_edge_counter = 0;
unsigned original_edges_counter = 0;
std::ofstream edge_data_file(
original_edge_data_filename.c_str(),
std::ios::binary
);
std::ofstream edge_data_file(original_edge_data_filename.c_str(), std::ios::binary);
// writes a dummy value that is updated later
edge_data_file.write(
(char*)&original_edges_counter,
sizeof(unsigned)
);
edge_data_file.write((char *)&original_edges_counter, sizeof(unsigned));
std::vector<OriginalEdgeData> original_edge_data_vector;
original_edge_data_vector.reserve(1024 * 1024);
@ -565,30 +543,35 @@ void EdgeBasedGraphFactory::GenerateEdgeExpandedEdges(const std::string& origina
for (NodeIterator u = 0, end = m_node_based_graph->GetNumberOfNodes(); u < end; ++u)
{
for (EdgeIterator e1 = m_node_based_graph->BeginEdges(u), last_edge_u = m_node_based_graph->EndEdges(u); e1 < last_edge_u; ++e1)
for (EdgeIterator e1 = m_node_based_graph->BeginEdges(u),
last_edge_u = m_node_based_graph->EndEdges(u);
e1 < last_edge_u;
++e1)
{
if (!m_node_based_graph->GetEdgeData(e1).forward)
{
if( !m_node_based_graph->GetEdgeData(e1).forward ) {
continue;
}
++node_based_edge_counter;
const NodeIterator v = m_node_based_graph->GetTarget(e1);
const NodeID to_node_of_only_restriction = m_restriction_map->CheckForEmanatingIsOnlyTurn(u, v);
const NodeID to_node_of_only_restriction =
m_restriction_map->CheckForEmanatingIsOnlyTurn(u, v);
const bool is_barrier_node = (m_barrier_nodes.find(v) != m_barrier_nodes.end());
for(
EdgeIterator e2 = m_node_based_graph->BeginEdges(v),
for (EdgeIterator e2 = m_node_based_graph->BeginEdges(v),
last_edge_v = m_node_based_graph->EndEdges(v);
e2 < last_edge_v;
++e2
) {
++e2)
{
if (!m_node_based_graph->GetEdgeData(e2).forward)
{
continue;
}
const NodeIterator w = m_node_based_graph->GetTarget(e2);
if ((to_node_of_only_restriction != SPECIAL_NODEID) && (w != to_node_of_only_restriction))
if ((to_node_of_only_restriction != SPECIAL_NODEID) &&
(w != to_node_of_only_restriction))
{
// We are at an only_-restriction but not at the right turn.
++restricted_turns_counter;
@ -614,7 +597,9 @@ void EdgeBasedGraphFactory::GenerateEdgeExpandedEdges(const std::string& origina
// only add an edge if turn is not a U-turn except when it is
// at the end of a dead-end street
if (m_restriction_map->CheckIfTurnIsRestricted(u, v, w) && (to_node_of_only_restriction == SPECIAL_NODEID) && (w != to_node_of_only_restriction))
if (m_restriction_map->CheckIfTurnIsRestricted(u, v, w) &&
(to_node_of_only_restriction == SPECIAL_NODEID) &&
(w != to_node_of_only_restriction))
{
++restricted_turns_counter;
continue;
@ -649,14 +634,11 @@ void EdgeBasedGraphFactory::GenerateEdgeExpandedEdges(const std::string& origina
++compressed;
}
original_edge_data_vector.push_back(
OriginalEdgeData(
original_edge_data_vector.push_back(OriginalEdgeData(
(edge_is_compressed ? m_geometry_compressor.GetPositionForID(e1) : v),
edge_data1.nameID,
turn_instruction,
edge_is_compressed
)
);
edge_is_compressed));
++original_edges_counter;
@ -668,16 +650,12 @@ void EdgeBasedGraphFactory::GenerateEdgeExpandedEdges(const std::string& origina
BOOST_ASSERT(SPECIAL_NODEID != edge_data1.edgeBasedNodeID);
BOOST_ASSERT(SPECIAL_NODEID != edge_data2.edgeBasedNodeID);
m_edge_based_edge_list.emplace_back(
EdgeBasedEdge(
edge_data1.edgeBasedNodeID,
m_edge_based_edge_list.emplace_back(EdgeBasedEdge(edge_data1.edgeBasedNodeID,
edge_data2.edgeBasedNodeID,
m_edge_based_edge_list.size(),
distance,
true,
false
)
);
false));
}
}
p.printIncrement();
@ -693,45 +671,40 @@ void EdgeBasedGraphFactory::GenerateEdgeExpandedEdges(const std::string& origina
SimpleLogger().Write() << "Edge-expanded graph ...";
SimpleLogger().Write() << " contains " << m_edge_based_edge_list.size() << " edges";
SimpleLogger().Write() << " skips " << restricted_turns_counter << " turns, "
"defined by " << m_restriction_map->size() << " restrictions";
"defined by "
<< m_restriction_map->size() << " restrictions";
SimpleLogger().Write() << " skips " << skipped_uturns_counter << " U turns";
SimpleLogger().Write() << " skips " << skipped_barrier_turns_counter << " turns over barriers";
}
int EdgeBasedGraphFactory::GetTurnPenalty(
const NodeID u,
int EdgeBasedGraphFactory::GetTurnPenalty(const NodeID u,
const NodeID v,
const NodeID w,
lua_State *lua_state
) const {
lua_State *lua_state) const
{
const double angle = GetAngleBetweenThreeFixedPointCoordinates(
m_node_info_list[u],
m_node_info_list[v],
m_node_info_list[w]
);
m_node_info_list[u], m_node_info_list[v], m_node_info_list[w]);
if( speed_profile.has_turn_penalty_function ) {
try {
if (speed_profile.has_turn_penalty_function)
{
try
{
// call lua profile to compute turn penalty
return luabind::call_function<int>(
lua_state,
"turn_function",
180.-angle
);
} catch (const luabind::error &er) {
return luabind::call_function<int>(lua_state, "turn_function", 180. - angle);
}
catch (const luabind::error &er)
{
SimpleLogger().Write(logWARNING) << er.what();
}
}
return 0;
}
TurnInstruction EdgeBasedGraphFactory::AnalyzeTurn(
const NodeID u,
const NodeID v,
const NodeID w
) const {
if(u == w) {
TurnInstruction EdgeBasedGraphFactory::AnalyzeTurn(const NodeID u, const NodeID v, const NodeID w)
const
{
if (u == w)
{
return TurnInstruction::UTurn;
}
@ -741,55 +714,63 @@ TurnInstruction EdgeBasedGraphFactory::AnalyzeTurn(
const EdgeData &data1 = m_node_based_graph->GetEdgeData(edge1);
const EdgeData &data2 = m_node_based_graph->GetEdgeData(edge2);
if(!data1.contraFlow && data2.contraFlow) {
if (!data1.contraFlow && data2.contraFlow)
{
return TurnInstruction::EnterAgainstAllowedDirection;
}
if(data1.contraFlow && !data2.contraFlow) {
if (data1.contraFlow && !data2.contraFlow)
{
return TurnInstruction::LeaveAgainstAllowedDirection;
}
// roundabouts need to be handled explicitely
if(data1.roundabout && data2.roundabout) {
if (data1.roundabout && data2.roundabout)
{
// Is a turn possible? If yes, we stay on the roundabout!
if( 1 == m_node_based_graph->GetOutDegree(v) ) {
if (1 == m_node_based_graph->GetOutDegree(v))
{
// No turn possible.
return TurnInstruction::NoTurn;
}
return TurnInstruction::StayOnRoundAbout;
}
// Does turn start or end on roundabout?
if(data1.roundabout || data2.roundabout) {
if (data1.roundabout || data2.roundabout)
{
// We are entering the roundabout
if( (!data1.roundabout) && data2.roundabout) {
if ((!data1.roundabout) && data2.roundabout)
{
return TurnInstruction::EnterRoundAbout;
}
// We are leaving the roundabout
if(data1.roundabout && (!data2.roundabout) ) {
if (data1.roundabout && (!data2.roundabout))
{
return TurnInstruction::LeaveRoundAbout;
}
}
// If street names stay the same and if we are certain that it is not a
// a segment of a roundabout, we skip it.
if( data1.nameID == data2.nameID ) {
if (data1.nameID == data2.nameID)
{
// TODO: Here we should also do a small graph exploration to check for
// more complex situations
if( 0 != data1.nameID ) {
if (0 != data1.nameID)
{
return TurnInstruction::NoTurn;
} else if (m_node_based_graph->GetOutDegree(v) <= 2) {
}
else if (m_node_based_graph->GetOutDegree(v) <= 2)
{
return TurnInstruction::NoTurn;
}
}
const double angle = GetAngleBetweenThreeFixedPointCoordinates(
m_node_info_list[u],
m_node_info_list[v],
m_node_info_list[w]
);
m_node_info_list[u], m_node_info_list[v], m_node_info_list[w]);
return TurnInstructionsClass::GetTurnDirectionOfInstruction(angle);
}
unsigned EdgeBasedGraphFactory::GetNumberOfEdgeBasedNodes() const {
unsigned EdgeBasedGraphFactory::GetNumberOfEdgeBasedNodes() const
{
return m_number_of_edge_based_nodes;
}

View File

@ -58,50 +58,38 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <queue>
#include <vector>
class EdgeBasedGraphFactory : boost::noncopyable {
class EdgeBasedGraphFactory : boost::noncopyable
{
public:
struct SpeedProfileProperties;
explicit EdgeBasedGraphFactory(
const boost::shared_ptr<NodeBasedDynamicGraph>& node_based_graph,
explicit EdgeBasedGraphFactory(const boost::shared_ptr<NodeBasedDynamicGraph> &node_based_graph,
std::unique_ptr<RestrictionMap> restricion_map,
std::vector<NodeID> &barrier_node_list,
std::vector<NodeID> &traffic_light_node_list,
std::vector<NodeInfo> &m_node_info_list,
SpeedProfileProperties & speed_profile
);
SpeedProfileProperties &speed_profile);
void Run(
const std::string & original_edge_data_filename,
void Run(const std::string &original_edge_data_filename,
const std::string &geometry_filename,
lua_State *myLuaState
);
lua_State *myLuaState);
void GetEdgeBasedEdges(DeallocatingVector<EdgeBasedEdge> &edges);
void GetEdgeBasedNodes(std::vector<EdgeBasedNode> &nodes);
TurnInstruction AnalyzeTurn(
const NodeID u,
const NodeID v,
const NodeID w
) const;
TurnInstruction AnalyzeTurn(const NodeID u, const NodeID v, const NodeID w) const;
int GetTurnPenalty(
const NodeID u,
const NodeID v,
const NodeID w,
lua_State *myLuaState
) const;
int GetTurnPenalty(const NodeID u, const NodeID v, const NodeID w, lua_State *myLuaState) const;
unsigned GetNumberOfEdgeBasedNodes() const;
struct SpeedProfileProperties{
SpeedProfileProperties() :
trafficSignalPenalty(0),
uTurnPenalty(0),
has_turn_penalty_function(false)
{ }
struct SpeedProfileProperties
{
SpeedProfileProperties()
: trafficSignalPenalty(0), uTurnPenalty(0), has_turn_penalty_function(false)
{
}
int trafficSignalPenalty;
int uTurnPenalty;
@ -130,22 +118,16 @@ private:
void CompressGeometry();
void RenumberEdges();
void GenerateEdgeExpandedNodes();
void GenerateEdgeExpandedEdges(
const std::string& original_edge_data_filename,
lua_State* lua_state
);
void GenerateEdgeExpandedEdges(const std::string &original_edge_data_filename,
lua_State *lua_state);
void InsertEdgeBasedNode(
NodeBasedDynamicGraph::NodeIterator u,
void InsertEdgeBasedNode(NodeBasedDynamicGraph::NodeIterator u,
NodeBasedDynamicGraph::NodeIterator v,
NodeBasedDynamicGraph::EdgeIterator e1,
bool belongsToTinyComponent
);
bool belongsToTinyComponent);
void FlushVectorToStream(
std::ofstream & edge_data_file,
std::vector<OriginalEdgeData> & original_edge_data_vector
) const;
void FlushVectorToStream(std::ofstream &edge_data_file,
std::vector<OriginalEdgeData> &original_edge_data_vector) const;
unsigned max_id;
};

View File

@ -146,7 +146,8 @@ void GeometryCompressor::CompressEdge(const EdgeID edge_id_1,
m_free_list.pop_back();
}
const boost::unordered_map<EdgeID, unsigned>::const_iterator iter = m_edge_id_to_list_index_map.find(edge_id_1);
const boost::unordered_map<EdgeID, unsigned>::const_iterator iter =
m_edge_id_to_list_index_map.find(edge_id_1);
BOOST_ASSERT(iter != m_edge_id_to_list_index_map.end());
const unsigned edge_bucket_id1 = iter->second;
BOOST_ASSERT(edge_bucket_id1 == GetPositionForID(edge_id_1));

View File

@ -27,90 +27,95 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "TemporaryStorage.h"
TemporaryStorage::TemporaryStorage() {
temp_directory = boost::filesystem::temp_directory_path();
}
TemporaryStorage::TemporaryStorage() { temp_directory = boost::filesystem::temp_directory_path(); }
TemporaryStorage & TemporaryStorage::GetInstance(){
TemporaryStorage &TemporaryStorage::GetInstance()
{
static TemporaryStorage static_instance;
return static_instance;
}
TemporaryStorage::~TemporaryStorage() {
RemoveAll();
}
TemporaryStorage::~TemporaryStorage() { RemoveAll(); }
void TemporaryStorage::RemoveAll() {
void TemporaryStorage::RemoveAll()
{
boost::mutex::scoped_lock lock(mutex);
for(unsigned slot_id = 0; slot_id < stream_data_list.size(); ++slot_id) {
for (unsigned slot_id = 0; slot_id < stream_data_list.size(); ++slot_id)
{
DeallocateSlot(slot_id);
}
stream_data_list.clear();
}
int TemporaryStorage::AllocateSlot() {
int TemporaryStorage::AllocateSlot()
{
boost::mutex::scoped_lock lock(mutex);
try {
try
{
stream_data_list.push_back(StreamData());
} catch(boost::filesystem::filesystem_error & e) {
}
catch (boost::filesystem::filesystem_error &e)
{
Abort(e);
}
CheckIfTemporaryDeviceFull();
return stream_data_list.size() - 1;
}
void TemporaryStorage::DeallocateSlot(const int slot_id) {
try {
void TemporaryStorage::DeallocateSlot(const int slot_id)
{
try
{
StreamData &data = stream_data_list[slot_id];
boost::mutex::scoped_lock lock(*data.readWriteMutex);
if(!boost::filesystem::exists(data.temp_path)) {
if (!boost::filesystem::exists(data.temp_path))
{
return;
}
if(data.temp_file->is_open()) {
if (data.temp_file->is_open())
{
data.temp_file->close();
}
boost::filesystem::remove(data.temp_path);
} catch(boost::filesystem::filesystem_error & e) {
}
catch (boost::filesystem::filesystem_error &e)
{
Abort(e);
}
}
void TemporaryStorage::WriteToSlot(
const int slot_id,
char * pointer,
const std::size_t size
) {
try {
void TemporaryStorage::WriteToSlot(const int slot_id, char *pointer, const std::size_t size)
{
try
{
StreamData &data = stream_data_list[slot_id];
BOOST_ASSERT(data.write_mode);
boost::mutex::scoped_lock lock(*data.readWriteMutex);
BOOST_ASSERT_MSG(
data.write_mode,
"Writing after first read is not allowed"
);
if( 1073741824 < data.buffer.size() ) {
BOOST_ASSERT_MSG(data.write_mode, "Writing after first read is not allowed");
if (1073741824 < data.buffer.size())
{
data.temp_file->write(&data.buffer[0], data.buffer.size());
// data.temp_file->write(pointer, size);
data.buffer.clear();
CheckIfTemporaryDeviceFull();
}
data.buffer.insert(data.buffer.end(), pointer, pointer + size);
} catch(boost::filesystem::filesystem_error & e) {
}
catch (boost::filesystem::filesystem_error &e)
{
Abort(e);
}
}
void TemporaryStorage::ReadFromSlot(
const int slot_id,
char * pointer,
const std::size_t size
) {
try {
void TemporaryStorage::ReadFromSlot(const int slot_id, char *pointer, const std::size_t size)
{
try
{
StreamData &data = stream_data_list[slot_id];
boost::mutex::scoped_lock lock(*data.readWriteMutex);
if( data.write_mode ) {
if (data.write_mode)
{
data.write_mode = false;
data.temp_file->write(&data.buffer[0], data.buffer.size());
data.buffer.clear();
@ -119,44 +124,57 @@ void TemporaryStorage::ReadFromSlot(
}
BOOST_ASSERT(!data.write_mode);
data.temp_file->read(pointer, size);
} catch(boost::filesystem::filesystem_error & e) {
}
catch (boost::filesystem::filesystem_error &e)
{
Abort(e);
}
}
uint64_t TemporaryStorage::GetFreeBytesOnTemporaryDevice() {
uint64_t TemporaryStorage::GetFreeBytesOnTemporaryDevice()
{
uint64_t value = -1;
try {
try
{
boost::filesystem::path p = boost::filesystem::temp_directory_path();
boost::filesystem::space_info s = boost::filesystem::space(p);
value = s.free;
} catch(boost::filesystem::filesystem_error & e) {
}
catch (boost::filesystem::filesystem_error &e)
{
Abort(e);
}
return value;
}
void TemporaryStorage::CheckIfTemporaryDeviceFull() {
void TemporaryStorage::CheckIfTemporaryDeviceFull()
{
boost::filesystem::path p = boost::filesystem::temp_directory_path();
boost::filesystem::space_info s = boost::filesystem::space(p);
if( (1024*1024) > s.free ) {
if ((1024 * 1024) > s.free)
{
throw OSRMException("temporary device is full");
}
}
boost::filesystem::fstream::pos_type TemporaryStorage::Tell(const int slot_id) {
boost::filesystem::fstream::pos_type TemporaryStorage::Tell(const int slot_id)
{
boost::filesystem::fstream::pos_type position;
try {
try
{
StreamData &data = stream_data_list[slot_id];
boost::mutex::scoped_lock lock(*data.readWriteMutex);
position = data.temp_file->tellp();
} catch(boost::filesystem::filesystem_error & e) {
}
catch (boost::filesystem::filesystem_error &e)
{
Abort(e);
}
return position;
}
void TemporaryStorage::Abort(const boost::filesystem::filesystem_error& e) {
void TemporaryStorage::Abort(const boost::filesystem::filesystem_error &e)
{
RemoveAll();
throw OSRMException(e.what());
}

View File

@ -56,7 +56,8 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
static boost::filesystem::path temp_directory;
static std::string TemporaryFilePattern("OSRM-%%%%-%%%%-%%%%");
class TemporaryStorage {
class TemporaryStorage
{
public:
static TemporaryStorage &GetInstance();
virtual ~TemporaryStorage();
@ -69,43 +70,33 @@ public:
uint64_t GetFreeBytesOnTemporaryDevice();
boost::filesystem::fstream::pos_type Tell(const int slot_id);
void RemoveAll();
private:
TemporaryStorage();
TemporaryStorage(TemporaryStorage const &) {};
TemporaryStorage & operator=(TemporaryStorage const &) {
return *this;
}
TemporaryStorage &operator=(TemporaryStorage const &) { return *this; }
void Abort(const boost::filesystem::filesystem_error &e);
void CheckIfTemporaryDeviceFull();
struct StreamData {
struct StreamData
{
bool write_mode;
boost::filesystem::path temp_path;
boost::shared_ptr<boost::filesystem::fstream> temp_file;
boost::shared_ptr<boost::mutex> readWriteMutex;
std::vector<char> buffer;
StreamData() :
write_mode(true),
temp_path(
boost::filesystem::unique_path(
temp_directory.append(
TemporaryFilePattern.begin(),
TemporaryFilePattern.end()
)
)
),
temp_file(
new boost::filesystem::fstream(
temp_path,
std::ios::in|std::ios::out|std::ios::trunc|std::ios::binary
)
),
StreamData()
: write_mode(true), temp_path(boost::filesystem::unique_path(temp_directory.append(
TemporaryFilePattern.begin(), TemporaryFilePattern.end()))),
temp_file(new boost::filesystem::fstream(
temp_path, std::ios::in | std::ios::out | std::ios::trunc | std::ios::binary)),
readWriteMutex(boost::make_shared<boost::mutex>())
{
if( temp_file->fail() ) {
if (temp_file->fail())
{
throw OSRMException("temporary file could not be created");
}
}